scholarly journals Octahedral CuII and NiII complexes manifesting with N′-[1-(pyridin-2-yl)ethylidene] acetohydrazide: Structural outlooks and spectral characteristics

2013 ◽  
Vol 11 (1) ◽  
pp. 116-122 ◽  
Author(s):  
Amitabha Datta ◽  
Jui-Hsien Huang ◽  
Jack Clegg ◽  
Pei-Hsin Liu ◽  
Sheng-Jie Chuang

AbstractA tridentate hydrazone precursor, N′-[1-(pyridin-2-yl)ethylidene]acetohydrazide (L) (1:1 refluxed product of acetichydrazide and 2-acetylpyridine), produced two octahedral CuII and NiII derivatives, [CuL2]·NO3 (1) and [NiL2]·ClO4·H2O (2). Both are subjected to X-ray diffraction system, and structural investigation shows that the central metal atom (CuII or NiII) adopts a distorted octahedral geometry with N4O2 donor sets by coordination of a pair of independent hydrazone precursors. Besides X-ray study, IR and UV-vis spectra, thermal analysis and room temperature magnetic moments are utilized for establishing significant characteristics of both complexes. It is apparent that the M-Npyridine bonds are slightly longer than the M-Nimino bonds, Cu1-N1 and Cu1-N4 [2.300(2) and 2.038(2) Å] for 1 and Ni1-N1 and Ni1-N4 [2.075(2) and 2.084(1) Å] for 2, Cu1-N2 and Cu1-N5 [2.062(1) and 1.932(1) Å] for 1 and Ni1-N2 and Ni1-N5 [2.008(2) and 1.975(2) Å] for 2, respectively. As per our observation, the effective magnetic moment value (µeff) is found to be 1.77 B.M. for 1 and 3.06 BM for 2, respectively.

2010 ◽  
Vol 65 (6) ◽  
pp. 695-700 ◽  
Author(s):  
Selcuk Demir ◽  
Veysel T. Yilmaz ◽  
Jerzy Mroziński ◽  
Tadeusz Lis ◽  
Małgorzata Hołyńska

A new cobalt(II) complex, [Co(H2O)4(nia)2](suc)·(H2suc) [nicotinamide = nia, succinate = suc2−], has been synthesized and characterized by elemental analysis, IR, TG-DTA and single-crystal X-ray diffraction. It contains [Co(H2O)4(nia)2]2+ complex cations, uncoordinated suc2− anios and H2suc species. In the complex cation the cobalt(II) ion is coordinated by four aqua and two nia ligands in a distorted octahedral geometry. The suc2− dianion acts as a counter-ion, while H2suc is present as a molecule of solvation. A three-dimensional network is formed by O-H· · ·O and N-H· · ·O hydrogen bonds. The title complex exhibits luminescence in the solid state at room temperature. The magnetism of the complex was studied over the temperature range 1.8 - 300 K.


2020 ◽  
Vol 42 (6) ◽  
pp. 928-928
Author(s):  
Fouzia Chang Fouzia Chang ◽  
Najma Memon Najma Memon ◽  
Shahabuddin Memon Shahabuddin Memon ◽  
Muhammad Naeem Ahmed Muhammad Naeem Ahmed ◽  
Muhammad Nawaz Tahir Muhammad Nawaz Tahir ◽  
...  

A novel Poly [bis-and#181;-3,5-dinitro-2-oxidobenzoato) (py) Cu II]/(C12H7CuN3O7) was synthesized by a self assemble method at room temperature. The molecular structure was determined by single-crystal X-ray analysis. The compound crystallizes in the monoclinic system, space group P 2 1/c with lattice parameters of a = 10.2143, b = 5.1651 and c = 26.608, α = 90, β = 99.720, γ = 90, Z = 4, V = 1383.60 (18) and#197;3.Pore size depicted from single crystal XRD data was 47and#197;. The central metal atom Cu (II) is coordinated with oxygen of carboxylates group and nitrogen atom of pyridine. The coordination polyhedron posses square pyramidal geometry is manifested by the N— Cu—O angle of 90o. The structure is composed of monomeric coordination units with the central copper (II) ion is not occupying a centre of symmetry.


1997 ◽  
Vol 12 (4) ◽  
pp. 239-241 ◽  
Author(s):  
Stefan Dick ◽  
Michaela Müller ◽  
Franziska Preissinger ◽  
Thomas Zeiske

The crystal structure of low temperature NaNiO2 has been refined by Rietveld methods using powder X-ray diffraction and neutron scattering data. The starting model was based on parameters that had been obtained earlier by X-ray film methods. At room temperature NaNiO2 is monoclinic, C2/m, a=0.53192(2), b=0.28451(1), c=0.55826(4) nm, β=110.449(2)°. NaNiO2 has a layered structure. The Ni–O layer is formed by edge sharing of Jahn–Teller elonganted NiO6 octahedra with Ni–O distances of 0.1911(2) nm and 0.2144(4) nm. The Na ions between these layers also exhibit a distorted octahedral coordination with Na–O distances of 0.2328(2) nm and 0.2369(4) nm. The final R values were Rwp=0.069, RI=0.059, Rexp=0.059 for the neutron and Rwp=0.032, RI=0.034, Rexp=0.017 for the X-ray data.


2019 ◽  
Vol 75 (7) ◽  
pp. 951-959 ◽  
Author(s):  
Zahra Mardani ◽  
Mohammad Hakimi ◽  
Keyvan Moeini ◽  
Fabian Mohr

The reaction between 2-[2-(aminoethyl)amino]ethanol and pyridine-2-carbaldehyde in a 1:2 molar ratio affords a mixture containing 2-({2-[(pyridin-2-ylmethylidene)amino]ethyl}amino)ethanol (PMAE) and 2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine (POPME). Treatment of this mixture with copper(II) chloride or cadmium(II) chloride gave trichlorido[(2-hydroxyethyl)({2-[(pyridin-2-ylmethylidene)amino]ethyl})azanium]copper(II) monohydrate, [Cu(C10H16N3O)Cl3]·H2O or [Cu(HPMAE)Cl3]·H2O, 1, and dichlorido{2-[2-(pyridin-2-yl)oxazolidin-3-yl]-N-(pyridin-2-ylmethylidene)ethanamine}cadmium(II), [CdCl2(C16H18N4O)] or [CdCl2(POPME)], 2, which were characterized by elemental analysis, FT–IR, Raman and 1H NMR spectroscopy and single-crystal X-ray diffraction. PMAE is potentially a tetradentate N3O-donor ligand but coordinates to copper here as an N2 donor. In the structure of 1, the geometry around the Cu atom is distorted square pyramidal. In 2, the Cd atom has a distorted octahedral geometry. In addition to the hydrogen bonds, there are π–π stacking interactions between the pyridine rings in the crystal packing of 1 and 2. The ability of PMAE, POPME and 1 to interact with ten selected biomolecules (BRAF kinase, CatB, DNA gyrase, HDAC7, rHA, RNR, TrxR, TS, Top II and B-DNA) was investigated by docking studies and compared with doxorubicin.


2008 ◽  
Vol 61 (5) ◽  
pp. 397 ◽  
Author(s):  
Saliu A. Amolegbe ◽  
Maliha Asma ◽  
Min Zhang ◽  
Gang Li ◽  
Wen-Hua Sun

A series of chromium(iii) complexes ligated by N^N^N tridentate 2-quinoxalinyl-6-iminopyridine were synthesized and characterized by elemental analysis and infrared spectroscopy. Single-crystal X-ray diffraction analysis for the structure of complex C3 reveals a distorted octahedral geometry. When methylaluminoxane was employed as the co-catalyst, the chromium complexes showed high activities for ethylene oligomerization and polymerization. The distribution of oligomers obtained followed Schulz–Flory rules with high selectivity for α-olefins. Both steric and electronic effects of coordinated ligands affected the catalytic activities as well as the properties of the catalytic products. The parameters of the reaction conditions were also investigated to explore the optimum catalytic potentials of these complexes.


2016 ◽  
Vol 71 (8) ◽  
pp. 909-917 ◽  
Author(s):  
Jia-Ming Li ◽  
Kun-Huan He ◽  
Zhong-Feng Shi ◽  
Hui-Yuan Gao ◽  
Yi-Min Jiang

AbstractTwo new metal-organic frameworks, namely, [Cd(L)(H2O)]n (1) and {[Cd0.5(L)(4,4′-bipy)0.5][Cd0.5(H2O)(4,4′-bipy)0.5]·H2O}n (2), where H2L = N-pyrazinesulfonyl-glycine and 4,4′-bipy = 4,4′-bipyridine, have been synthesized and characterized by single-crystal X-ray diffraction, IR spectroscopy, elemental, thermogravimetric, and photoluminescent analysis. X-ray diffraction crystallographic analyses indicate that 1 displays a distorted octahedral metal coordination in a 3-connected (4, 82) topology, while the molecular structure of 2 has a 4-connected (4, 4) topology with two perfectly octahedrally coordinated Cd centers. The L2– ligand serves as a N,N,O-tridentate, μ2-pyrazine-bridging, and μ2-carboxylate-bridging ligand in 1, and as a N,O-bidentate and μ2-carboxylate-bridging ligand in 2. In the crystal, a 3D supramolecular architecture is formed by O–H···O hydrogen bond interactions in 1, but through O–H···O as well as π···π stacking in 2. The two compounds show intense fluorescence in the solid state at room temperature.


2016 ◽  
Vol 81 (11) ◽  
pp. 1251-1262 ◽  
Author(s):  
Oluwafunmilayo Adekunle ◽  
Ray Butcher ◽  
Oladapo Bakare ◽  
Olusegun Odunola

[Cu(phen)2(CH3COO)](ClO4).2H2O (1) and [Cu(bipy)2(CH3COO)]-(ClO4).H2O (2) {phen = 1,10-phenanthroline, bipy = 2,2?-bipyridine}were synthesized and characterized. The complexes were characterized by employying elemental analyses, infrared and UV-Visible spectroscopy, room temperature magnetic measurements and the crystal structures elucidated using X-ray diffraction experiment. The redox properties of the complexes were also investigated. Both structures have a square pyramidal CuN4O chromophore which exhibit significant distortions due to long Cu-O [2.217(3) ? for (1) and 2.179 (1) for (2)] and Cu-N [2.631(2) ? for (1) and 2.714(1) ? for (2)] bonds. This distortion if further shown by the O-Cu-N bond angles [147.71(8) o for (1) and 153.40(5) o for (2)]. The elemental analyses further support the structural details unveiled by the single crystal X-ray diffraction analysis. The infrared spectra shows the acetate vibrational frequencies at 1587 cm-1,1428 cm-1, 1314 cm-1 for (1) and 1571 cm-1, 1441 cm-1, 1319c m-1 for (2) and the perchlo-rate bands at 1059 cm-1, 720 cm-1 (1) and 1080 cm-1,768 cm-1 (2). The broad d-d bands for the copper ion at 14,514 cm-1(1) and 14,535 cm-1(2) support the adoption of square pyramid geometries. The magnetic moments for the two complexes are 1.83 B.M for (1) and 1.72 B.M for (2). The peak to peak values of the two complexes show that the electrode reactions are quasi-reversibile with ?Ep = 0.023V (1) and 0.025V for (2). In both structures, there are ?-? intermolecular interactions in addition to hydrogen bonding between the units.


1982 ◽  
Vol 37 (7) ◽  
pp. 863-871 ◽  
Author(s):  
William S. Sheldrick

AbstractThe stable ternary copper(II) complexes of ATP and ADP, [Cu(H2ATP)(phen)]2 · 7 H2O (2) and [Cu4(HADP)2(bipy)4(H2O)2(NO3)2] · 2 NO3 (3), have been isolated from aqueous solution at respective pH values of 2.8 and 4.0. Their structures have been established by single crystal X-ray diffraction. Tridentate coordination of each of the Cu atoms by ono α-, one β- and one γ-phosphate O atom of one ATP molecule is observed in 2. The binding Oα atoms occupy axial positions in a distorted octahedral geometry at Cu and the Cu- Oα interactions are weak. The other axial position is occupied by a γ-phosphate O atom of the second ATP molecule, leading to a dimeric structure. The basic structure of 3 is similar with, in this case, bidentate coordination of each of the central Cu atoms by one α- and one β-phosphate O atom of ono ADP molecule. In this case, however, the third terminal β-phosphate O atoms each bind a further Cu atom. All four Cu atoms in 3 display square pyramidal coordination. The structures of 2 and 3 are stabilised by intramolecular stacking of adenine and phenanthroline/bipyridyl systems. The significance of these structures as models for enzyme-metal ion-nucleoside polyphosphate complexes is discussed.


2010 ◽  
Vol 65 (9) ◽  
pp. 1106-1112
Author(s):  
Amitabha Datta ◽  
Sébastien Pillet ◽  
Nien-Tsu Chuang ◽  
Hon Man Lee ◽  
Jui-Hsien Huang

Two new cyano-bridged trinuclear heterometallic complexes [Ca2(phen)4(ClO4)(H2O)3- Fe(CN)6]・H2O (1) and [Ca2 (phen)4(CH3COO)(H2O)3Fe(CN)6]・2H2O (2) (where phen = 1,10- phenanthroline) have been synthesized and characterized by single-crystal X-ray diffraction techniques, IR spectroscopy and thermogravimetric analysis. The structure of complex 1 features a central [Fe(CN)6]3− unit that links a monocation [Ca(phen)2(H2O)(ClO4)]+ and a dication [Ca(phen)2- (H2O)2]2+ via two trans cyanide bridges. Similarly, complex 2 also features a central [Fe(CN)6]3− unit that links a monocation [Ca(phen)2(H2O)(CH3COO)]+ and a dication [Ca(phen)2(H2O)2]2+ via two trans cyanide bridges. In 1 and 2, both Ca centers are seven-coordinated and achieve a pentagonal- bipyramidal geometry whereas the Fe center in both the complexes possesses a distorted octahedral geometry. Intra- and intermolecular hydrogen bonding networks are present in 1 and 2 that impart the overall molecular stability to both the systems.


2018 ◽  
Vol 74 (8) ◽  
pp. 1049-1053
Author(s):  
Yue-Xin Guo ◽  
Hong-Cui Ma ◽  
Ren Bo ◽  
Ning Zhao ◽  
Li-Gang Zhao ◽  
...  

The molecular structures of tetraaqua[N,N′-bis(pyridin-4-yl)pyridine-2,6-dicarboxamide]sulfatomanganese(II) dihydrate, [Mn(SO4)(C17H13N5O2)(H2O)4]·2H2O or [Mn(H2 L 1)(SO4)(H2O)4]·2H2O, (I), and tetraaquabis[N,N′-bis(pyridin-4-yl)pyridine-2,6-dicarboxamide]cadmium(II) sulfate tetrahydrate, [Cd(C17H13N5O2)2(H2O)4]SO4·4H2O or [Cd(H2O)4(H2 L 1)2]·SO4·4H2O, (II), both contain a central metal atom in a distorted octahedral geometry coordinated equatorially by four oxygen atoms from water molecules. In (I), the axial positions are occupied by a nitrogen atom from H2 L 1 and an oxygen atom from the sulfate anion, whereas in (II), the axial positions contain two nitrogen atoms from two different H2 L 1 ligands and the sulfate anion acts as the charge-balancing ion. π–π stacking between pyridine rings and a network of hydrogen bonds involving the water molecules and the sulfate anions play a crucial role in the molecular self-assembly of the two structures.


Sign in / Sign up

Export Citation Format

Share Document