Pt coated Cr2O3 thin films for resistive gas sensors

Open Physics ◽  
2009 ◽  
Vol 7 (2) ◽  
Author(s):  
Aarne Kasikov ◽  
Alar Gerst ◽  
Arvo Kikas ◽  
Leonard Matisen ◽  
Agu Saar ◽  
...  

AbstractThe resistive response of atomic layer deposited thin epitaxial α-Cr2O3(0 0 1) films, to H2 and CO in air, was studied. The films were covered with Pt nanoislands formed by electron-beam evaporation of a sub-monolayer amount of the material. The gas measurements were performed at 250°C and 450°C. These temperatures led to different proportion of chemical states, Pt2+ and Pt4+, to which the Pt oxidized. The modification was ascertained by the X-ray photoelectron spectroscopy method. As a result of the modification, the response was fast at 250°C, but slowed at 450°C. A disadvantageous abundance of Pt4+ arising at 450°C in air could be diminished by high-vacuum annealing thus restoring the response properties of the system at 250°C.

2019 ◽  
Author(s):  
Timothy J. Gorey ◽  
Yang Dai ◽  
Scott Anderson ◽  
Sungsik Lee ◽  
Sungwon Lee ◽  
...  

In heterogeneous catalysis, atomic layer deposition (ALD) has been developed as a tool to stabilize and reduce carbon deposition on supported nanoparticles. Here, we discuss use of high vacuum ALD to deposit alumina films on size-selected, sub-nanometer Pt/SiO2 model catalysts. Mass-selected Pt24 clusters were deposited on oxidized Si(100), to form model Pt24/SiO2 catalysts with particles shown to be just under 1 nm, with multilayer three dimensional structure. Alternating exposures to trimethylaluminum and water vapor in an ultra-high vacuum chamber were used to grow alumina on the samples without exposing them to air. The samples were probed in situ using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (ISS), and CO temperature-programmed desorption (TPD). Additional samples were prepared for ex situ experiments using grazing incidence small angle x-ray scattering spectroscopy (GISAXS). Alumina growth is found to initiate at least 60 times more efficiently at the Pt24 cluster sites, compared to bare SiO2/Si, with a single ALD cycle depositing a full alumina layer on top of the clusters, with substantial additional alumina growth initiating on SiO2 sites surrounding the clusters. As a result, the clusters were completely passivated, with no exposed Pt binding sites.


2008 ◽  
Vol 104 (7) ◽  
pp. 074316 ◽  
Author(s):  
M. Murugesan ◽  
J. C. Bea ◽  
C.-K. Yin ◽  
H. Nohira ◽  
E. Ikenaga ◽  
...  

2019 ◽  
Author(s):  
Timothy J. Gorey ◽  
Yang Dai ◽  
Scott Anderson ◽  
Sungsik Lee ◽  
Sungwon Lee ◽  
...  

In heterogeneous catalysis, atomic layer deposition (ALD) has been developed as a tool to stabilize and reduce carbon deposition on supported nanoparticles. Here, we discuss use of high vacuum ALD to deposit alumina films on size-selected, sub-nanometer Pt/SiO2 model catalysts. Mass-selected Pt24 clusters were deposited on oxidized Si(100), to form model Pt24/SiO2 catalysts with particles shown to be just under 1 nm, with multilayer three dimensional structure. Alternating exposures to trimethylaluminum and water vapor in an ultra-high vacuum chamber were used to grow alumina on the samples without exposing them to air. The samples were probed in situ using X-ray photoelectron spectroscopy (XPS), low-energy ion scattering spectroscopy (ISS), and CO temperature-programmed desorption (TPD). Additional samples were prepared for ex situ experiments using grazing incidence small angle x-ray scattering spectroscopy (GISAXS). Alumina growth is found to initiate at least 60 times more efficiently at the Pt24 cluster sites, compared to bare SiO2/Si, with a single ALD cycle depositing a full alumina layer on top of the clusters, with substantial additional alumina growth initiating on SiO2 sites surrounding the clusters. As a result, the clusters were completely passivated, with no exposed Pt binding sites.


2019 ◽  
Vol 10 ◽  
pp. 1537-1547 ◽  
Author(s):  
Vadim B Platonov ◽  
Marina N Rumyantseva ◽  
Alexander S Frolov ◽  
Alexey D Yapryntsev ◽  
Alexander M Gaskov

Increasing requirements for environmental protection have led to the need for the development of control systems for exhaust gases monitored directly at high temperatures in the range of 300–800 °C. The development of high-temperature gas sensors requires the creation of new materials that are stable under these conditions. The stability of nanostructured semiconductor oxides at high temperature can be enhanced by creating composites with highly dispersed silicon carbide (SiC). In this work, ZnO and SiC nanofibers were synthesized by electrospinning of polymer solutions followed by heat treatment, which is necessary for polymer removal and crystallization of semiconductor materials. ZnO/SiC nanocomposites (15–45 mol % SiC) were obtained by mixing the components in a single homogeneous paste with subsequent thermal annealing. The composition and microstructure of the materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). The electrophysical and gas sensing properties of the materials were investigated by in situ conductivity measurements in the presence of the reducing gases CO and NH3 (20 ppm), in dry conditions (relative humidity at 25 °C RH25 = 0) and in humid air (RH25 = 30%) in the temperature range 400–550 °C. The ZnO/SiC nanocomposites were characterized by a higher concentration of chemisorbed oxygen, higher activation energy of conductivity, and higher sensor response towards CO and NH3 as compared with ZnO nanofibers. The obtained experimental results were interpreted in terms of the formation of an n–n heterojunction at the ZnO/SiC interface.


1992 ◽  
Vol 270 ◽  
Author(s):  
Haojie Yuan ◽  
R. Stanley Williams

ABSTRACTThin films of pure germanium-carbon alloys (GexC1−x with x ≈ 0.0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) have been grown on Si(100) and A12O3 (0001) substrates by pulsed laser ablation in a high vacuum chamber. The films were analyzed by x-ray θ-2θ diffraction (XRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), conductivity measurements and optical absorption spectroscopy. The analyses of these new materials showed that films of all compositions were amorphous, free of contamination and uniform in composition. By changing the film composition, the optical band gap of these semiconducting films was varied from 0.00eV to 0.85eV for x = 0.0 to 1.0 respectively. According to the AES results, the carbon atoms in the Ge-C alloy thin film samples has a bonding configuration that is a mixture of sp2 and sp3 hybridizations.


2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Baojun Yan ◽  
Shulin Liu ◽  
Yuekun Heng ◽  
Yuzhen Yang ◽  
Yang Yu ◽  
...  

1999 ◽  
Vol 567 ◽  
Author(s):  
Masayuki Suzuki ◽  
Yoji Saito

ABSTRACTWe tried direct oxynitridation of silicon surfaces by remote-plasma-exited nitrogen and oxygen gaseous mixtures at 700°C in a high vacuum. The oxynitrided surfaces were investigated with in-situ X-ray photoelectron spectroscopy. With increase of the oxynitridation time, the surface density of nitrogen gradually increases, but that of oxygen shows nearly saturation behavior after the rapid increase in the initial stage. We also annealed the grown oxynitride and oxide films to investigate the role of the contained nitrogen. The desorption rate of oxygen from the oxynitride films is much less than that from oxide films. We confirmed that nitrogen stabilizes the thermal stability of these oxynitride films.


1989 ◽  
Vol 159 ◽  
Author(s):  
E.D. Richmond

ABSTRACTFor the first time the (1102) surface of sapphire has been investigated by X-ray photoelectron spectroscopy to ascertain chemical changes resulting from annealing in vacuum at 1300° C and 1450° C. As received substrates had a substantial surface C contaminant. For substrates that were chemically cleaned before inserting them into the MBE system no trace of carbon is detected. A residual flourine contaminant results from the cleaning procedure and is desorbed by the vacuum annealing. Spectra of annealed substrates are compared to the unannealed chemically cleaned substrates. The annealed substrates exhibit 0.4 to 0.5 eV shift to higher binding energy of the Al peak and a 0.3 eV shift to higher binding energy of the O peak. In addition, a 2% depletion of oxygen from the surface occurs.


Sign in / Sign up

Export Citation Format

Share Document