Enzymatic synthesis of a chiral chalcogran intermediate

2014 ◽  
Vol 68 (6) ◽  
Author(s):  
Vladimír Mastihuba ◽  
Pavel Čepec ◽  
Silvia Vlčková ◽  
Erika Farkašová ◽  
Mária Mastihubová ◽  
...  

AbstractTwo lipases, Novozyme 435 (lipase B from Candida Antarctica) and Lipozyme TL IM (Thermomyces lanuginosus) were used successfully for the kinetic resolution of racemic 1-(2-furyl)-3-pentanol, the key intermediate in synthesis of the bark beetle pheromone, chalcogran. The desired S-(+)-enantiomer was prepared in enantiomeric excesses higher than 98 % and with yields of 26.3 % and 32.5 %, respectively. Methyl tert-butyl ether and vinyl acetate were found to be the best reaction media and the acetyl donor to achieve fast and effective resolution.

Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 140
Author(s):  
Ferdinando Zaccone ◽  
Valentina Venturi ◽  
Pier Paolo Giovannini ◽  
Claudio Trapella ◽  
Marco Narducci ◽  
...  

Recent studies have highlighted the therapeutic and ergogenic potential of the ketone body ester, (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate. In the present work, the enzymatic synthesis of this biological active compound is reported. The (R)-3-hydroxybutyl-(R)-3-hydroxybutyrate has been produced through the transesterification of racemic ethyl 3-hydroxybutyrate with (R)-1,3-butanediol by exploiting the selectivity of Candida antarctica lipase B (CAL-B). The needed (R)-1,3-butanediol was in turn obtained from the kinetic resolution of the racemate achieved by acetylation with vinyl acetate, also in this case, thanks to the enantioselectivity of the CAL-B used as catalyst. Finally, the stereochemical inversion of the unreacted (S) enantiomers of the ethyl 3-hydroxybutyate and 1,3-butanediol accomplished by known procedure allowed to increase the overall yield of the synthetic pathway by incorporating up to 70% of the starting racemic reagents into the final product.


2002 ◽  
Vol 68 (6) ◽  
pp. 2754-2762 ◽  
Author(s):  
Alan François ◽  
Hugues Mathis ◽  
Davy Godefroy ◽  
Pascal Piveteau ◽  
Françoise Fayolle ◽  
...  

ABSTRACT A strain that efficiently degraded methyl tert-butyl ether (MTBE) was obtained by initial selection on the recalcitrant compound tert-butyl alcohol (TBA). This strain, a gram-positive methylotrophic bacterium identified as Mycobacterium austroafricanum IFP 2012, was also able to degrade tert-amyl methyl ether and tert-amyl alcohol. Ethyl tert-butyl ether was weakly degraded. tert-Butyl formate and 2-hydroxy isobutyrate (HIBA), two intermediates in the MTBE catabolism pathway, were detected during growth on MTBE. A positive effect of Co2+ during growth of M. austroafricanum IFP 2012 on HIBA was demonstrated. The specific rate of MTBE degradation was 0.6 mmol/h/g (dry weight) of cells, and the biomass yield on MTBE was 0.44 g (dry weight) per g of MTBE. MTBE, TBA, and HIBA degradation activities were induced by MTBE and TBA, and TBA was a good inducer. Involvement of at least one monooxygenase during degradation of MTBE and TBA was shown by (i) the requirement for oxygen, (ii) the production of propylene epoxide from propylene by MTBE- or TBA- grown cells, and (iii) the inhibition of MTBE or TBA degradation and of propylene epoxide production by acetylene. No cytochrome P-450 was detected in MTBE- or TBA-grown cells. Similar protein profiles were obtained after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of crude extracts from MTBE- and TBA-grown cells. Among the polypeptides induced by these substrates, two polypeptides (66 and 27 kDa) exhibited strong similarities with known oxidoreductases.


2016 ◽  
Vol 74 (6) ◽  
pp. 1365-1375 ◽  
Author(s):  
Chensi Shen ◽  
Shaoshuai Wu ◽  
Hui Chen ◽  
Sadia Rashid ◽  
Yuezhong Wen

In order to prevent health risk from potential exposures to phthalates, a glow discharge plasma (GDP) process was applied for phthalate degradation in aqueous solution. The results revealed that the phthalate derivatives 4-hydroxyphthalic acid, 4-methylphthalic acid and 4-tert-butylphthalic anhydride could be degraded efficiently in GDP process (498 V, 0.2 A) with high removal efficiencies of over 99% in 60 minutes. Additionally, pyrite as a promising heterogeneous iron source in the Fenton reaction was found to be favorable for GDP process. The phthalate degradation reaction could be significantly enhanced by the continuous formation of •OH and the inhibition of the quenching reaction in the pyrite Fenton system due to the constant dissolution of Fe(II) from pyrite surface. Meanwhile, the initial pH value showed little impact on the degradation of phthalates and the energy efficiency of GDP system for phthalate degradation ranged between 0.280 × 10−9 and 1.210 × 10−9 mol/J, which is similar to the GDP system with phenol, bisphenol A and methyl tert-butyl ether as the substrates. Further, the X-ray diffraction and scanning electron microscopy with energy dispersive X-ray spectroscopy analyses indicated that the pyrite was relatively stable in GDP system and there was no obvious polymeric compound formed on the catalyst surface. Overall, this GDP process offers high removal efficiency, simple technology, considerable energy efficiency and the applicability to salt-containing phthalate wastewater.


1994 ◽  
Vol 29 (4) ◽  
pp. 486-494 ◽  
Author(s):  
Naohito Uchida ◽  
Toshiaki Nakatsu ◽  
Shuko Hirabayashi ◽  
Atsushi Minami ◽  
Hiroki Fukuma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document