Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices

2012 ◽  
Vol 20 (2) ◽  
Author(s):  
S. Pickering ◽  
A. Kshirsagar ◽  
J. Ruzyllo ◽  
J. Xu

AbstractIn this experiment a technique of mist deposition was explored as a way to form patterned ultra-thin-films of CdSe/ZnS core/shell nanocrystalline quantum dots using colloidal solutions. The objective of this study was to investigate the feasibility of mist deposition as a patterning method for creating multicolour quantum dot light emitting diodes. Mist deposition was used to create three rows of quantum dot light emitting diodes on a single device with each row having a separate colour. The colours chosen were red, green and yellow with corresponding peak wavelengths of 620 nm, 558 nm, and 587 nm. The results obtained from this experiment show that it is possible to create multicolour devices on a single substrate. The peak brightnesses obtained in this experiment for the red, green, and yellow were 508 cd/m, 507 cd/m, and 665 cd/m, respectively. The similar LED brightness is important in display technologies using colloidal quantum dots in a precursor solution to ensure one colour does not dominate the emitted spectrum. Results obtained in-terms of brightness were superior to those achieved with inkjet deposition. This study has shown that mist deposition is a viable method for patterned deposition applied to quantum dot light emitting diode display technologies.

2019 ◽  
Vol 6 (10) ◽  
pp. 2009-2015 ◽  
Author(s):  
Zhiwen Yang ◽  
Qianqian Wu ◽  
Gongli Lin ◽  
Xiaochuan Zhou ◽  
Weijie Wu ◽  
...  

An all-solution processed inverted green quantum dot-based light-emitting diode with concurrent high efficiency and long lifetime is obtained by precisely controlled double shell growth of quantum dots.


2014 ◽  
Vol 2 (25) ◽  
pp. 4974-4979 ◽  
Author(s):  
Wan Ki Bae ◽  
Jaehoon Lim ◽  
Matthias Zorn ◽  
Jeonghun Kwak ◽  
Young-Shin Park ◽  
...  

Hybridization of colloidal quantum-dots and conducting polymers improves the efficiency roll-off of quantum-dot light-emitting diodes.


2016 ◽  
Vol 9 (4) ◽  
pp. 1130-1143 ◽  
Author(s):  
Ruili Wang ◽  
Yuequn Shang ◽  
Pongsakorn Kanjanaboos ◽  
Wenjia Zhou ◽  
Zhijun Ning ◽  
...  

Colloidal quantum dots (CQDs) are fast-improving materials for next-generation solution-processed optoelectronic devices such as solar cells, photocatalysis, light emitting diodes, and photodetectors.


2014 ◽  
Vol 14 (11) ◽  
pp. 8636-8640 ◽  
Author(s):  
Yohan Kim ◽  
Christian Ippen ◽  
Tonino Greco ◽  
Min Suk Oh ◽  
Chul Jong Han ◽  
...  

Author(s):  
Lishuang Wang ◽  
Ying Lv ◽  
Jie Lin ◽  
Jialong Zhao ◽  
Xingyuan Liu ◽  
...  

For quantum dots light-emitting diodes (QLEDs), typical colloidal quantum dots (QDs) are usually composed of a core/shell heterostructure which is covered with organic ligands as surface passivated materials to confine...


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Lung-Chien Chen ◽  
Yi-Tsung Chang ◽  
Ching-Ho Tien ◽  
Yu-Chun Yeh ◽  
Zong-Liang Tseng ◽  
...  

AbstractThis work presents a method for obtaining a color-converted red light source through a combination of a blue GaN light-emitting diode and a red fluorescent color conversion film of a perovskite CsPbI3/TOPO composite. High-quality CsPbI3 quantum dots (QDs) were prepared using the hot-injection method. The colloidal QD solutions were mixed with different ratios of trioctylphosphine oxide (TOPO) to form nanowires. The color conversion films prepared by the mixed ultraviolet resin and colloidal solutions were coated on blue LEDs. The optical and electrical properties of the devices were measured and analyzed at an injection current of 50 mA; it was observed that the strongest red light intensity was 93.1 cd/m2 and the external quantum efficiency was 5.7% at a wavelength of approximately 708 nm when CsPbI3/TOPO was 1:0.35.


2021 ◽  
Vol 52 (1) ◽  
pp. 953-956
Author(s):  
Tatsuya Ryowa ◽  
Yusuke Sakakibara ◽  
Tadashi Kobashi ◽  
Keisuke Kitano ◽  
Masaya Ueda ◽  
...  

Author(s):  
JaeIn Yoo ◽  
Suk-Ho Song ◽  
Jae-Peel Jung ◽  
Zhang Yi ◽  
Sung-Jae Park ◽  
...  

2017 ◽  
Vol 7 (11) ◽  
pp. 3875 ◽  
Author(s):  
Qin Zhang ◽  
Chao Nie ◽  
Chun Chang ◽  
Chenyang Guo ◽  
Xiao Jin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document