Completeness properties of the pseudocompact-open topology on C(X)

2008 ◽  
Vol 58 (3) ◽  
Author(s):  
S. Kundu ◽  
Pratibha Garg

AbstractThis is a study of the completeness properties of the space C ps(X) of continuous real-valued functions on a Tychonoff space X, where the function space has the pseudocompact-open topology. The properties range from complete metrizability to the Baire space property.

2014 ◽  
Vol 57 (4) ◽  
pp. 803-809 ◽  
Author(s):  
S. S. Gabriyelyan

AbstractLet L(X) be the free locally convex space over a Tychonoff space X. Then L(X) is a k-space if and only if X is a countable discrete space. We prove also that L(D) has uncountable tightness for every uncountable discrete space D.


1984 ◽  
Vol 49 (2) ◽  
pp. 514-519 ◽  
Author(s):  
Ieke Moerdijk

This paper deals with locales and their spaces of points in intuitionistic analysis or, if you like, in (Grothendieck) toposes. One of the important aspects of the problem whether a certain locale has enough points is that it is directly related to the (constructive) completeness of a geometric theory. A useful exposition of this relationship may be found in [1], and we will assume that the reader is familiar with the general framework described in that paper.We will consider four formal spaces, or locales, namely formal Cantor space C, formal Baire space B, the formal real line R, and the formal function space RR being the exponential in the category of locales (cf. [3]). The corresponding spaces of points will be denoted by pt(C), pt(B), pt(R) and pt(RR). Classically, these locales all have enough points, of course, but constructively or in sheaves this may fail in each case. Let us recall some facts from [1]: the assertion that C has enough points is equivalent to the compactness of the space of points pt(C), and is traditionally known in intuitionistic analysis as the Fan Theorem (FT). Similarly, the assertion that B has enough points is equivalent to the principle of (monotone) Bar Induction (BI). The locale R has enough points iff its space of points pt(R) is locally compact, i.e. the unit interval pt[0, 1] ⊂ pt(R) is compact, which is of course known as the Heine-Borel Theorem (HB). The statement that RR has enough points, i.e. that there are “enough” continuous functions from R to itself, does not have a well-established name. We will refer to it (not very imaginatively, I admit) as the principle (EF) of Enough Functions.


Author(s):  
Neng-Yu Zhang ◽  
Bruce F. McEwen ◽  
Joachim Frank

Reconstructions of asymmetric objects computed by electron tomography are distorted due to the absence of information, usually in an angular range from 60 to 90°, which produces a “missing wedge” in Fourier space. These distortions often interfere with the interpretation of results and thus limit biological ultrastructural information which can be obtained. We have attempted to use the Method of Projections Onto Convex Sets (POCS) for restoring the missing information. In POCS, use is made of the fact that known constraints such as positivity, spatial boundedness or an upper energy bound define convex sets in function space. Enforcement of such constraints takes place by iterating a sequence of function-space projections, starting from the original reconstruction, onto the convex sets, until a function in the intersection of all sets is found. First applications of this technique in the field of electron microscopy have been promising.To test POCS on experimental data, we have artificially reduced the range of an existing projection set of a selectively stained Golgi apparatus from ±60° to ±50°, and computed the reconstruction from the reduced set (51 projections). The specimen was prepared from a bull frog spinal ganglion as described by Lindsey and Ellisman and imaged in the high-voltage electron microscope.


2007 ◽  
Vol 7 (3) ◽  
pp. 239-254 ◽  
Author(s):  
I.H. Sloan

Abstract Finite-order weights have been introduced in recent years to describe the often occurring situation that multivariate integrands can be approximated by a sum of functions each depending only on a small subset of the variables. The aim of this paper is to demonstrate the danger of relying on this structure when designing lattice integration rules, if the true integrand has components lying outside the assumed finiteorder function space. It does this by proving, for weights of order two, the existence of 3-dimensional lattice integration rules for which the worst case error is of order O(N¯½), where N is the number of points, yet for which there exists a smooth 3- dimensional integrand for which the integration rule does not converge.


2019 ◽  
Vol 10 (6) ◽  
pp. 1220-1222
Author(s):  
T. Venkatesh ◽  
Karuna Samaje

2013 ◽  
Vol 33 (8) ◽  
pp. 2337-2340
Author(s):  
Zhiying TAN ◽  
Ying CHEN ◽  
Yong FENG ◽  
Xiaobo SONG

1984 ◽  
Vol 10 (1) ◽  
pp. 188
Author(s):  
Kostyrko ◽  
Salat
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1106
Author(s):  
Jagdish N. Pandey

We define a testing function space DL2(Rn) consisting of a class of C∞ functions defined on Rn, n≥1 whose every derivtive is L2(Rn) integrable and equip it with a topology generated by a separating collection of seminorms {γk}|k|=0∞ on DL2(Rn), where |k|=0,1,2,… and γk(ϕ)=∥ϕ(k)∥2,ϕ∈DL2(Rn). We then extend the continuous wavelet transform to distributions in DL2′(Rn), n≥1 and derive the corresponding wavelet inversion formula interpreting convergence in the weak distributional sense. The kernel of our wavelet transform is defined by an element ψ(x) of DL2(Rn)∩DL1(Rn), n≥1 which, when integrated along each of the real axes X1,X2,…Xn vanishes, but none of its moments ∫Rnxmψ(x)dx is zero; here xm=x1m1x2m2⋯xnmn, dx=dx1dx2⋯dxn and m=(m1,m2,…mn) and each of m1,m2,…mn is ≥1. The set of such wavelets will be denoted by DM(Rn).


Author(s):  
Moritz Feigl ◽  
Mathew Herrnegger ◽  
Robert Schweppe ◽  
Stephan Thober ◽  
Daniel Klotz ◽  
...  

ZusammenfassungDas Schätzen von räumlich verteilten Parametern hydrologischer Modelle ist ein bereits lang erforschtes und anspruchsvolles Problem. Parameter-Transferfunktionen, die einen funktionellen Zusammenhang zwischen Modellparametern und geophysikalischen Gebietseigenschaften herstellen, sind eine potenzielle Möglichkeit, Parameter ohne Kalibrierung zu schätzen. Function Space Optimization (FSO) ist eine symbolische Regressionsmethode, die automatisiert Transferfunktionen aus Daten schätzen kann. Sie basiert auf einem textgenerierenden neuronalen Netzwerk, das die Suche nach einer optimalen Funktion in ein kontinuierliches Optimierungsproblem umwandelt.In diesem Beitrag beschreiben wir die Funktionsweise von FSO und geben ein Beispiel der Anwendung mit dem mesoscale Hydrological Model (mHM). Ziel der Anwendung ist die Schätzung zweier Transferfunktionen für die Parameter KSat (gesättigte hydraulische Leitfähigkeit) und FieldCap (Feldkapazität). Dafür verwenden wir Daten 7 großer deutscher Einzugsgebieten über einen Zeitraum von 5 Jahren zum Schätzen der Transferfunktionen und weiterer numerischer Parameter. Die resultierenden Funktionen und Parameter werden ohne weitere Kalibrierung auf 222 Validierungsgebiete über eine Validierungsperiode von 35 Jahren angewendet. Mit der Anwendung in diesen „unbeobachteten“ Gebieten können wir die Übertragbarkeit und die zumindest regionale Gültigkeit der Transferfunktionen überprüfen.Die Ergebnisse zeigen, dass bei einer Anwendung in unbeobachteten Gebieten die Modellgüte in einem ähnlichen Wertebereich wie in den Trainingsgebieten liegt und somit weiterhin akzeptabel ist. Die Nash-Sutcliffe Efficiency (NSE) in den Trainingsgebieten über den Validierungszeitraum unterscheidet sich mit einem medianen Wert von 0,73 nicht nennenswert von dem der Validierungsgebiete mit einem medianen NSE von 0,65.Zusammengefasst haben Transferfunktionen das Potenzial, die Vorhersagefähigkeiten, Übertragbarkeit auf andere Gebiete sowie physikalische Interpretierbarkeit bestehender hydrologischer Modelle zu verbessern. Mit FSO wurde zum ersten Mal eine objektive, datengetriebene Methode entwickelt, mit der Transferfunktionen geschätzt werden können.


Author(s):  
SHIHO OI

Abstract Li et al. [‘Weak 2-local isometries on uniform algebras and Lipschitz algebras’, Publ. Mat.63 (2019), 241–264] generalized the Kowalski–Słodkowski theorem by establishing the following spherical variant: let A be a unital complex Banach algebra and let $\Delta : A \to \mathbb {C}$ be a mapping satisfying the following properties: (a) $\Delta $ is 1-homogeneous (that is, $\Delta (\lambda x)=\lambda \Delta (x)$ for all $x \in A$ , $\lambda \in \mathbb C$ ); (b) $\Delta (x)-\Delta (y) \in \mathbb {T}\sigma (x-y), \quad x,y \in A$ . Then $\Delta $ is linear and there exists $\lambda _{0} \in \mathbb {T}$ such that $\lambda _{0}\Delta $ is multiplicative. In this note we prove that if (a) is relaxed to $\Delta (0)=0$ , then $\Delta $ is complex-linear or conjugate-linear and $\overline {\Delta (\mathbf {1})}\Delta $ is multiplicative. We extend the Kowalski–Słodkowski theorem as a conclusion. As a corollary, we prove that every 2-local map in the set of all surjective isometries (without assuming linearity) on a certain function space is in fact a surjective isometry. This gives an affirmative answer to a problem on 2-local isometries posed by Molnár [‘On 2-local *-automorphisms and 2-local isometries of B(H)', J. Math. Anal. Appl.479(1) (2019), 569–580] and also in a private communication between Molnár and O. Hatori, 2018.


Sign in / Sign up

Export Citation Format

Share Document