scholarly journals Thermal evolution of the morphology of Ni/Ge(111)-c(2 × 8) surface

2014 ◽  
Vol 32 (4) ◽  
pp. 641-647 ◽  
Author(s):  
Agnieszka Tomaszewska ◽  
Jhen-Hao Li ◽  
Xiao-Lan Huang ◽  
Tsu-Yi Fu

AbstractThe thermal evolution of the interface formed by room temperature (RT) deposition of Ni atoms (coverage 0.1, 0.5, 1.2 ML) onto a Ge(111)-c(2 × 8) surface has been studied with the use of scanning tunneling microscopy (STM). Atomically resolved STM images revealed that, at RT, the boundaries between the different c(2 × 8) domains acted as nucleation sites for Ni atoms. After annealing the surface with deposited material at 473 to 673 K the formation of nano-sized islands of NixGey compounds was observed. In addition, the occurrence of ring-like structures was recorded. Based on the dual-polarity images the latter were assigned to Ni atoms adsorbed on Ge adatoms.

Molecules ◽  
2020 ◽  
Vol 25 (13) ◽  
pp. 2962
Author(s):  
Young-Sang Youn

The effect of deposition time on the surface coverage of sublimation deposited solid-phase glycine and proline molecules onto a Ge(100) surface was studied at room temperature using scanning tunneling microscopy (STM). The STM images obtained at various coverages of glycine and proline adsorbed on the Ge(100) surface showed that (i) the adsorption rate for both molecules gradually decreased with increasing deposition time, obeying the Langmuir adsorption model, and (ii) the coverage of glycine on the Ge(100) surface is higher than that of proline under the same deposition conditions, which may be due to the differences in their molecular weight or molecular sticking probability.


2010 ◽  
Vol 148-149 ◽  
pp. 1273-1276 ◽  
Author(s):  
Ai Mei Gao ◽  
Wen Li Deng ◽  
Hong Yu Chen

The self-assembly behaviour of a novel cationic porphyrin-anthraquione (Por-AQ) hybrid ([AQATMPyP]I3) on highly oriented pyrolytic graphite (HOPG) was studied at room temperature in air by scanning tunneling microscopy(STM). According to theoretical calculation, it is testified that [AQATMPyP]I3 molecule mainly exists in the closed structure. The STM results reveal the presence of large-scale domains of ordered adlayer of this hybrid compound on HOPG. The STM images show a structure constituted by parallel rows. The width of each row is approximately 2.5nm.


2004 ◽  
Vol 815 ◽  
Author(s):  
M.A.K. Zilani ◽  
H. Xu ◽  
X.S. Wang ◽  
A.T.S. Wee

AbstractWe have studied the interaction of C60 with clean Si(111) and sub-monolayer Co covered Si(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Our STM results indicate that C60 has little mobility at room temperature (RT) on Co/Si(111). After annealing to 450 °C, STM images show a regular arrangement of partially decomposed C60. XPS reveals a partial decomposition of C60 on Co/Si(111) at 520 °C, and total decomposition to form a SiC-3×3 phase at 720 °C. These results show that Co catalyses C60 decomposition resulting in the formation of the ordered SiC-3×3 phase ∼200 °C below that on clean Si(111).


Author(s):  
Mircea Fotino ◽  
D.C. Parks

In the last few years scanning tunneling microscopy (STM) has made it possible and easily accessible to visualize surfaces of conducting specimens at the atomic scale. Such performance allows the detailed characterization of surface morphology in an increasing spectrum of applications in a wide variety of fields. Because the basic imaging process in STM differs fundamentally from its equivalent in other well-established microscopies, good understanding of the imaging mechanism in STM enables one to grasp the correct information content in STM images. It thus appears appropriate to explore by STM the structure of amorphous carbon films because they are used in many applications, in particular in the investigation of delicate biological specimens that may be altered through the preparation procedures.All STM images in the present study were obtained with the commercial instrument Nanoscope II (Digital Instruments, Inc., Santa Barbara, California). Since the importance of the scanning tip for image optimization and artifact reduction cannot be sufficiently emphasized, as stressed by early analyses of STM image formation, great attention has been directed toward adopting the most satisfactory tip geometry. The tips used here consisted either of mechanically sheared Pt/Ir wire (90:10, 0.010" diameter) or of etched W wire (0.030" diameter). The latter were eventually preferred after a two-step procedure for etching in NaOH was found to produce routinely tips with one or more short whiskers that are essentially rigid, uniform and sharp (Fig. 1) . Under these circumstances, atomic-resolution images of cleaved highly-ordered pyro-lytic graphite (HOPG) were reproducibly and readily attained as a standard criterion for easily recognizable and satisfactory performance (Fig. 2).


RSC Advances ◽  
2016 ◽  
Vol 6 (100) ◽  
pp. 98001-98009 ◽  
Author(s):  
Thais Chagas ◽  
Thiago H. R. Cunha ◽  
Matheus J. S. Matos ◽  
Diogo D. dos Reis ◽  
Karolline A. S. Araujo ◽  
...  

We have used atomically-resolved scanning tunneling microscopy and spectroscopy to study the interplay between the atomic and electronic structure of graphene formed on copper via chemical vapor deposition.


1998 ◽  
Vol 05 (01) ◽  
pp. 69-76
Author(s):  
F. P. Netzer ◽  
L. Vitali ◽  
J. Kraft ◽  
M. G. Ramesy

The interaction of vapor phase P2 with the [Formula: see text] monolayer surface at room temperature and elevated temperature has been monitored by scanning tunneling microscopy (STM) and spectroscopy (STS) in conjunction with Auger electron spectroscopy and low-energy electron diffraction (LEED). The surface rection can be readily followed by STM because of the very different contrast of the reacted areas in the STM images. The reaction develops around overlayer defects at room temperature and appears to be diffusion-limited, whereas at 300°C the reaction is initiated at the step edges, from which the reaction front progresses onto the lower terrace areas. At elevated temperature several ordered surface reconstructions, showing different STS fingerprints, are detected on the P–In/Si(111) surfaces, which are associated tentatively with P- and Si-terminated structures and an ordered InP phase.


1997 ◽  
Vol 55 (7) ◽  
pp. 4723-4730 ◽  
Author(s):  
J. van Wingerden ◽  
A. van Dam ◽  
M. J. Haye ◽  
P. M. L. O. Scholte ◽  
F. Tuinstra

1990 ◽  
Vol 209 ◽  
Author(s):  
G. P. E. M. Van Bakell ◽  
J. Th. M. De Hosson ◽  
T. Hibma

ABSTRACTStructural features of TiS2 were studied by scanning tunneling microscopy (STM) and single-crystal X-ray diffraction was applied as a complementary technique. STM images in air and at room temperature revealed, beside the trigonal symmetry of the lattice, several new features having this symmetry as well. We conclude that these features not only are to be described by structural defect phenomena which affect octahedral sites in the 1T-CdI2 structure but tetrahedral sites as well. Sample orientation determination by X-ray diffraction provides a unique relation between feature types and sites. A model is proposed in which displaced Ti atoms account for the observed features.


Sign in / Sign up

Export Citation Format

Share Document