scholarly journals An operational Haar wavelet method for solving fractional Volterra integral equations

Author(s):  
Habibollah Saeedi ◽  
Nasibeh Mollahasani ◽  
Mahmoud Moghadam ◽  
Gennady Chuev

An operational Haar wavelet method for solving fractional Volterra integral equationsA Haar wavelet operational matrix is applied to fractional integration, which has not been undertaken before. The Haar wavelet approximating method is used to reduce the fractional Volterra and Abel integral equations to a system of algebraic equations. A global error bound is estimated and some numerical examples with smooth, nonsmooth, and singular solutions are considered to demonstrate the validity and applicability of the developed method.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
E. Fathizadeh ◽  
R. Ezzati ◽  
K. Maleknejad

We use a computational method based on rational Haar wavelet for solving nonlinear fractional integro-differential equations. To this end, we apply the operational matrix of fractional integration for rational Haar wavelet. Also, to show the efficiency of the proposed method, we solve particularly population growth model and Abel integral equations and compare the numerical results with the exact solutions.


2018 ◽  
Vol 3 (2) ◽  
pp. 447-458 ◽  
Author(s):  
S.C. Shiralashetti ◽  
H. S. Ramane ◽  
R.A. Mundewadi ◽  
R.B. Jummannaver

AbstractIn this paper, a comparative study on Haar wavelet method (HWM) and Hosoya Polynomial method(HPM) for the numerical solution of Fredholm integral equations. Illustrative examples are tested through the error analysis for efficiency. Numerical results are shown in the tables and figures.


Author(s):  
S. Singh ◽  
S. Saha Ray

In this paper, the numerical solutions of multi-dimensional stochastic Itô–Volterra integral equations have been obtained by second kind Chebyshev wavelets. The second kind Chebyshev wavelets are orthonormal and have compact support on [Formula: see text]. The block pulse functions and their relations to second kind Chebyshev wavelets are employed to derive a general procedure for forming stochastic operational matrix of second kind Chebyshev wavelets. The system of integral equations has been reduced to a system of nonlinear algebraic equations and solved for obtaining the numerical solutions. Convergence and error analysis of the proposed method are also discussed. Furthermore, some examples have been discussed to establish the accuracy and efficiency of the proposed scheme.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1369
Author(s):  
Hoang Viet Long ◽  
Haifa Bin Jebreen ◽  
Stefania Tomasiello

In this work, an efficient algorithm is proposed for solving the system of Volterra integral equations based on wavelet Galerkin method. This problem is reduced to a set of algebraic equations using the operational matrix of integration and wavelet transform matrix. For linear type, the computational effort decreases by thresholding. The convergence analysis of the proposed scheme has been investigated and it is shown that its convergence is of order O(2−Jr), where J is the refinement level and r is the multiplicity of multi-wavelets. Several numerical tests are provided to illustrate the ability and efficiency of the method.


Author(s):  
G. Hariharan

Wavelet analysis is a recently developed mathematical tool in applied mathematics. A wavelet method for a class of space-time fractional Klein–Gordon equations with constant coefficients is proposed, by combining the Haar wavelet and operational matrix together and efficaciously dispersing the coefficients. The behavior of the solutions and the effects of different values of fractional order α are graphically shown. The fundamental idea of the Haar wavelet method is to convert the fractional Klein–Gordon equations into a group of algebraic equations, which involves a finite number of variables. The examples are given to demonstrate that the method is effective, fast, and flexible; in the meantime, it is found that the difficulties of using the Daubechies wavelets for solving the differential equation, which need to calculate the correlation coefficients, are avoided.


2013 ◽  
Vol 2 (2) ◽  
pp. 149
Author(s):  
Hariharan Gopalakrishnan ◽  
R. Rajaraman Raman ◽  
K. Kannan Kirthivasan

This paper describes a traveling wave model for describing the lightning stroke by the Haar wavelet method (HWM) is proposed. Numerical example is included and illustrated for applicability and validity of the proposed method. The fundamental idea of Haar wavelet method is to convert the differential equations into a group of algebraic equations that involves a finite number of variables. The power of the manageable method is confirmed. The results show that the proposed way is quite reasonable when compared to exact solution. Moreover the use of Haar wavelets is found to be accurate, simple, fast, flexible, convenient, small computation costs and computationally attractive.


2020 ◽  
Vol 12 (3) ◽  
pp. 409-415
Author(s):  
Majid Erfanian ◽  
Hamed Zeidabadi ◽  
Rohollah Mehri

In this work, two-dimensional rational Haar wavelet method has been used to solve the twodimensional Volterra integral equations. By using fixed point Banach theorem we achieved the order of convergence and the rate of convergence is O(n(2q)n). Numerical solutions of three examples are presented by applying a simple and efficient computational algorithm.


Sign in / Sign up

Export Citation Format

Share Document