scholarly journals Comparison of Division II College Offensive and Defensive Football Players' Upper Body Strength Across One Repetition Maximum Test and The NFL-225 Test

2009 ◽  
Vol 21 (1) ◽  
pp. 75-82 ◽  
Author(s):  
Bulent Agbuga ◽  
John Slovak ◽  
Ferman Konukman ◽  
Ilker Yilmaz

Comparison of Division II College Offensive and Defensive Football Players' Upper Body Strength Across One Repetition Maximum Test and The NFL-225 TestThe purpose of this study was to evaluate the effectiveness of predicting actual one repetition maximum (1RM) bench press strength from the National Football League (NFL) 225-test in college football players. Forty-one Division II college football players participated in this study. Participants' upper body strength scores were expressed relative to body weight and results were compared across both tests. Mayhew et al. equation was used to predict 1RM. A repeated measures ANOVA and one-way ANOVA was used to compare the groups. The present study found that the Mayhew equation overestimated relative upper body strength of college football players, while high degree of reliability was found between the actual 1RM and the NFL-225 tests [Wilks λ = 0.43, F (1,40) = 53.07, p = 0.000, Eta-squared = 0.57] and the correlation between these two tests was very high (r = 0.94, p<0.001). The present study also found that defensive players were stronger than offensive players when scores were expressed relative to body weight. The finding of this study indicates that the NFL-225 test's applicability may not be identical for all college players. This study elucidates some of the difficulties associated with predicting 1RM. However, while it is difficult to predict 1RM, testing using sub-maximal loads are far less time consuming especially when they involve a large number of athletes. The results of this study should facilitate coaches in choosing the most appropriate strength testing procedure for their programs.

2015 ◽  
Vol 47 ◽  
pp. 119
Author(s):  
Willaim F. Brechue ◽  
Jerry L. Mayhew ◽  
J. Bryan Mann ◽  
Richard M. Schumacher ◽  
Abbie E. Smith-Ryan

Author(s):  
Barry Gerber ◽  
Anita E. Pienaar ◽  
Ankebe Kruger

Puberty and the onset of menarche influences the motor performance of girls. However, the magnitude of these influences during varying maturity status, is not clear. This longitudinal study over two years aimed to investigate differences in motor fitness between early and late developing girls based on pre- and post-menarche status. A convenience sample (n = 58) of girls aged 13.51 ± 3.51, divided by means of the Status Quo method into pre (n = 13) and post-menarche (n = 45) groups, was used. Motor fitness was tested once annually by standardized protocols. Basic statistics, independent t-testing and a repeated measures ANOVA with a post hoc Bonferonni correction were used (p < 0.05 = statistical significance). Effect sizes were determined by Cohen’s d-values. Only explosive upper body strength differed significantly between groups during baseline, favoring post-menarche girls. Initially, post-menarche girls showed advantages in hand-eye coordination and speed (p > 0.05) with pre-menarche girls performing better in agility and explosive leg strength (p > 0.05). At 15.51 years, no significant, between-group differences were found. Pre-menarche girls surpassed post-menarche girls in hand-eye coordination and 0–40 m speed and post-menarche girls displayed higher explosive leg and upper body strength scores (p > 0.05). Our data show that the potential to excel in sport based on motor capabilities can only be accurately estimated 1–2 years after reaching menarche.


Author(s):  
Mark J. Kilgallon ◽  
Michael J. Johnston ◽  
Liam P. Kilduff ◽  
Mark L. Watsford

Purpose: To compare resistance training using a velocity loss threshold with training to repetition failure on upper-body strength parameters in professional Australian footballers. Methods: A total of 26 professional Australian footballers (23.9 [4.2] y, 189.9 [7.8] cm, 88.2 [8.8] kg) tested 1-repetition-maximum strength (FPmax) and mean barbell velocity at 85% of 1-repetition maximum on floor press (FPvel). They were then assigned to 2 training groups: 20% velocity loss threshold training (VL; n = 12, maximum-effort lift velocity) or training to repetition failure (TF; n = 14, self-selected lift velocity). Subjects trained twice per week for 3 weeks before being reassessed on FPmax and FPvel. Training volume (total repetitions) was recorded for all training sessions. No differences were present between groups on any pretraining measure. Results: The TF group significantly improved FPmax (105.2–110.9 kg, +5.4%), while the VL group did not (107.5–109.2 kg, +1.6%) (P > .05). Both groups significantly increased FPvel (0.38–0.46 m·s−1, +19.1% and 0.37–0.42 m·s−1, +16.7%, respectively) with no between-groups differences evident (P > .05). The TF group performed significantly more training volume (12.2 vs 6.8 repetitions per session, P > .05). Conclusions: Training to repetition failure improved FPmax, while training using a velocity loss threshold of 20% did not. Both groups demonstrated similar improvements in FPvel despite the VL group completing 45% less total training volume than the TF group. The reduction in training volume associated with implementing a 20% velocity loss threshold may negatively impact the development of upper-body maximum strength while still enhancing submaximal movement velocity.


1999 ◽  
Vol 13 (2) ◽  
pp. 99-105
Author(s):  
KEN JONES ◽  
GARY HUNTER ◽  
GLENN FLEISIG ◽  
RAPHAEL ESCAMILLA ◽  
LAWRENCE LEMAK

2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Kok Lian Yee

Purpose: The purpose of the study was to compare the effects of daily undulating periodisation (DUP) and session undulating periodisation (SUP) for maintaining strength and power over a 3-wk period in a group of resistance-trained women.  DUP comprised one session each of strength and power training while DUP combined both strength and power training within each session.  Both training programmes were equalised for training volume and intensity.  Methods: Sixteen resistance-trained women were pre-tested for body mass, mid-arm and mid-thigh girths, one-repetition maximum (1 RM) dynamic squat (SQ) and bench press (BP), and  power during countermovement jumps (CMJ) and bench press throws (BPT). The 1 RM SQ and BP data were used to assign the participants into groups for twice a week training.  Results:  A two-way (group x time) analysis of variance (ANOVA) with repeated measures for time found no significant changes in body mass, mid-arm girth, 1 RM BP and SQ, and BPT and CMJ power for both groups.  However, significant changes in mid-thigh girth were found (F1, 13 = 5.733, p = 0.032). Pooled BP data indicated improved upper body strength (BP: F1, 13 = 6.346, p = 0.025) and decreased CMJ power (p = 0.016).  Conclusions:  Both DUP and SUP programmes increased upper-body strength and maintained lower-body strength adequately across a 3-wk phase probably because the participants were weaker in the upper-body and the lower-body had a reduced capacity for strength adaptations and improvements.


2020 ◽  
Vol 15 (4) ◽  
pp. 470-477 ◽  
Author(s):  
Jozo Grgic ◽  
Filip Sabol ◽  
Sandro Venier ◽  
Ivan Mikulic ◽  
Nenad Bratkovic ◽  
...  

Purpose: To explore the effects of 3 doses of caffeine on muscle strength and muscle endurance. Methods: Twenty-eight resistance-trained men completed the testing sessions under 5 conditions: no-placebo control, placebo control, and with caffeine doses of 2, 4, and 6 mg·kg−1. Muscle strength was assessed using the 1-repetition-maximum test; muscle endurance was assessed by having the participants perform a maximal number of repetitions with 60% 1-repetition maximum. Results: In comparison with both control conditions, only a caffeine dose of 2 mg·kg−1 enhanced lower-body strength (d = 0.13–0.15). In comparison with the no-placebo control condition, caffeine doses of 4 and 6 mg·kg−1 enhanced upper-body strength (d = 0.07–0.09) with a significant linear trend for the effectiveness of different doses of caffeine (P = .020). Compared with both control conditions, all 3 caffeine doses enhanced lower-body muscle endurance (d = 0.46–0.68). For upper-body muscle endurance, this study did not find significant effects of caffeine. Conclusions: This study revealed a linear trend between the dose of caffeine and its effects on upper-body strength. The study found no clear association between the dose of caffeine and the magnitude of its ergogenic effects on lower-body strength and muscle endurance. From a practical standpoint, the magnitude of caffeine’s effects on strength is of questionable relevance. A low dose of caffeine (2 mg·kg−1)—for an 80-kg individual, the dose of caffeine in 1–2 cups of coffee—may produce substantial improvements in lower-body muscle endurance with the magnitude of the effect being similar to that attained using higher doses of caffeine.


2015 ◽  
Vol 29 (3) ◽  
pp. 826-834 ◽  
Author(s):  
Johann C. Bilsborough ◽  
Kate G. Greenway ◽  
David A. Opar ◽  
Steuart G. Livingstone ◽  
Justin T. Cordy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document