Earthquake source parameters at the sumatran fault zone: Identification of the activated fault plane

2010 ◽  
Vol 2 (4) ◽  
Author(s):  
Madlazim Kasmolan ◽  
Bagus Santosa ◽  
Jonathan Lees ◽  
Widya Utama

AbstractFifteen earthquakes (Mw 4.1–6.4) occurring at ten major segments of the Sumatran Fault Zone (SFZ) were analyzed to identify their respective fault planes. The events were relocated in order to assess hypocenter uncertainty. Earthquake source parameters were determined from three-component local waveforms recorded by IRIS-DMC and GEOFON broadband lA networks. Epicentral distances of all stations were less than 10°. Moment tensor solutions of the events were calculated, along with simultaneous determination of centroid position. Joint analysis of hypocenter position, centroid position, and nodal planes produced clear outlines of the Sumatran fault planes. The preferable seismotectonic interpretation is that the events activated the SFZ at a depth of approximately 14–210 km, corresponding to the interplate Sumatran fault boundary. The identification of this seismic fault zone is significant to the investigation of seismic hazards in the region.

Author(s):  
Sunanda Manneela ◽  
T. Srinivasa Kumar ◽  
Shailesh R. Nayak

Exemplifying the tsunami source immediately after an earthquake is the most critical component of tsunami early warning, as not every earthquake generates a tsunami. After a major under sea earthquake, it is very important to determine whether or not it has actually triggered the deadly wave. The near real-time observations from near field networks such as strong motion and Global Positioning System (GPS) allows rapid determination of fault geometry. Here we present a complete processing chain of Indian Tsunami Early Warning System (ITEWS), starting from acquisition of geodetic raw data, processing, inversion and simulating the situation as it would be at warning center during any major earthquake. We determine the earthquake moment magnitude and generate the centroid moment tensor solution using a novel approach which are the key elements for tsunami early warning. Though the well established seismic monitoring network, numerical modeling and dissemination system are currently capable to provide tsunami warnings to most of the countries in and around the Indian Ocean, the study highlights the critical role of geodetic observations in determination of tsunami source for high-quality forecasting.


2019 ◽  
Vol 219 (2) ◽  
pp. 1148-1162
Author(s):  
Jiun-Ting Lin ◽  
Wu-Lung Chang ◽  
Diego Melgar ◽  
Amanda Thomas ◽  
Chi-Yu Chiu

SUMMARY We test the feasibility of GPS-based rapid centroid moment tensor (GPS CMT) methods for Taiwan, one of the most earthquake prone areas in the world. In recent years, Taiwan has become a leading developer of seismometer-based earthquake early warning systems, which have successfully been applied to several large events. The rapid determination of earthquake magnitude and focal mechanism, important for a number of rapid response applications, including tsunami warning, is still challenging because of the limitations of near-field inertial recordings. This instrumental issue can be solved by an entirely different observation system: a GPS network. Taiwan is well posed to take advantage of GPS because in the last decade it has developed a very dense network. Thus, in this research, we explore the suitability of the GPS CMT inversion for Taiwan. We retrospectively investigate six moderate to large (Mw6.0 ∼ 7.0) earthquakes and propose a resolution test for our model, we find that the minimum resolvable earthquake magnitude of this system is ∼Mw5.5 (at 5 km depth). Our tests also suggest that the finite fault complexity, often challenging for the near-field methodology, can be ignored under such good station coverage and thus, can provide a fast and robust solution for large earthquake directly from the near field. Our findings help to understand and quantify how the proposed methodology could be implemented in real time and what its contributions could be to the overall earthquake monitoring system.


2021 ◽  
Vol 873 (1) ◽  
pp. 012080
Author(s):  
Yeremia Hanniel ◽  
Ade Anggraini ◽  
Agus Riyanto ◽  
Drajat Ngadmanto ◽  
Wiwit Suryanto

Abstract On May 27, 2006, 05:54 am local time, a moderate crustal earthquake of magnitude Mw 6,3 struck the Yogyakarta province, especially in the Bantul regency in the south part of the province. The earthquake damaged or destroyed more than 400,000 houses and buildings and caused more than 5,700 people killed. Several earthquake stations recorded the ground vibration caused by the mainshock very well, except at the stations closest to the earthquake source, namely YOGI in Gamping, West of Yogyakarta, which experienced saturation due to significant vibration. Therefore, information about the maximum ground acceleration near the source is yet not known. We model the ground vibrations near the earthquake source using a stochastic Green’s Function approach to obtain information about the ground motions’ maximum amplitude. The earthquake source parameters we referred to is the moment tensor solution from the Harvard Moment Tensor. The calculations show that the amplitude is consistent with observations recorded at the BJI Banjarnegara (0.04g) and YOGI Yogyakarta (0.3g).


Sign in / Sign up

Export Citation Format

Share Document