scholarly journals Robust control system design in frequency domain

2013 ◽  
Vol 23 (1) ◽  
pp. 61-78 ◽  
Author(s):  
Vojtech Veselý ◽  
Jakub Osuský

Abstract In this paper two robust control methods for hybrid system are presented. Both methods are usefull for SISO and MIMO systems. Controller design procedure is developed in frequency domain. Equivalent subsystem method is used for controller design in this paper. Stability condition of proposed methods bases on small gain theory and uses additive and inverse additive model type. Two tank water system is presented in the paper and serves as a numerical example to compare effectiveness of described methods

2008 ◽  
Vol 2008 ◽  
pp. 1-10
Author(s):  
S.S. Yang ◽  
J. Chen

This paper presents an enhanced robust control design structure to realise fault tolerance towards sensor faults suitable for multi-input-multi-output (MIMO) systems implementation. The proposed design permits fault detection and controller elements to be designed with considerations to stability and robustness towards uncertainties besides multiple faults environment on a common mathematical platform. This framework can also cater to systems requiring fast responses. A design example is illustrated with a fast, multivariable and unstable system, that is, the double inverted pendulum system. Results indicate the potential of this design framework to handle fast systems with multiple sensor faults.


2003 ◽  
Vol 125 (1) ◽  
pp. 134-138 ◽  
Author(s):  
Levent Gu¨venc¸

A new and simple repetitive controller design procedure in controller parameter space, where the structure of the filters in the repetitive controller are fixed from the start and parameters within these filters are tuned, is presented here. This approach results in simple and physically meaningful controllers that are easily implementable. The design method is based on mapping frequency domain performance specifications into a chosen plane of controller parameters. Sensitivity function magnitude bounds and a relative stability measure are chosen as the frequency domain specifications to be mapped into controller parameter space here. The design method is illustrated numerically in the context of a servohydraulic material testing machine application available in the literature.


2016 ◽  
Vol 24 (8) ◽  
pp. 1469-1487 ◽  
Author(s):  
Muhammad Atif Khushnood ◽  
Wang Xiaogang ◽  
Cui Naigang

Optimal control techniques (LQG, H∞, etc.) offer several advantages for active vibration control, such as possibility of trade-off between achievable vibration attenuation and required control inputs, simultaneous suppression of multiple modes, unified and systematic controller design procedure for MIMO systems. However, a major limitation in their application has been the phenomena of spillover. For optimal controllers robustness to spillover is achieved by rolling-off controller response. In this paper, a novel criterion of sensors placement to minimize roll-off requirement, for given actuator locations, is proposed. As an illustration H∞ control is applied for suppressing first two modes of a slewing spacecraft. Comparison of results obtained for sensor location based on proposed criterion with those of collocated sensor location showed: (a) for a given controller order, performance characteristics similar to collocated control with improved robustness to spillover can be obtained by using the proposed criterion of sensor placement; (b) with proposed placement criterion robustness to spillover can be maintained with lower order controller as compared with the minimum controller order required for collocated control.


1983 ◽  
Vol 105 (4) ◽  
pp. 245-254 ◽  
Author(s):  
W. J. Book ◽  
M. Majette

The potential benefits of the ability to control more flexible mechanical arms are discussed. A justification is made in terms of speed of movement. A new controller design procedure is then developed to provide this capability. It uses both a frequency domain representation and a state variable representation of the arm model. The frequency domain model is used to update the modal state variable model to insure decoupled states. The technique is applied to a simple example with encouraging results.


Author(s):  
Rafik Salloum ◽  
Mohammad Reza Arvan ◽  
Bijan Moaveni

Electromechanical actuators (EMAs) are of interest for applications which require easy control and high dynamics. This paper addresses the experimental identification, structured and unstructured uncertainties modeling, and robust control design for an EMA system with harmonic drive. Two robust controllers are designed by two proposed approaches: The first is based on Kharitonov theorem, which not only robustly stabilizes the uncertain EMA system but also maintains the pre-specified margins and bandwidth constraints. The second is feedback compensation design procedure based on H∞ control theory, verifying good tradeoff between the powerful H∞ controller and the unique features of feedback compensation, such as simplicity, effectiveness, low sensitivity to parameters variations, low cost, and easy implementation. Simulation and experiments prove the robustness and high tracking performance of the robust EMA systems which reveals the affectivity of the proposed robust control design methods.


2008 ◽  
Vol 144 ◽  
pp. 16-21
Author(s):  
Arkadiusz Mystkowski ◽  
Zdzisław Gosiewski

Analysis of robustness of active magnetic bearing system is carried out in the paper. All of the most important acceptable levels of robustness are established. Rigid body model of a rotor is used for controller design, stability and analysis of robustness. Advanced tools for robust control are applied. The μ-synthesis is used to design a μ robust controller to stabilize the shaft that is supported magnetically. The influence of robust control on the sensitivity of plant with an uncertainty dynamics is shown. The influence of dynamic uncertainty on the robustness level of closed-loop system is considered. Small gain theorem and robustness theorem for an active magnetic bearing are investigated. Finally, the experimental results confirm the analytical investigations of the robust control of vibrations.


Author(s):  
Jose Luis ◽  
Jose Carlos ◽  
Manuel Berenguel ◽  
Francisco Rodriguez ◽  
Julian Sanchez-Hermosill

2005 ◽  
Vol 128 (2) ◽  
pp. 406-413 ◽  
Author(s):  
Bilin Aksun Güvenç ◽  
Levent Güvenç

A new and simple robust repetitive controller design procedure in controller parameter space is presented here. The structure of the repetitive controller filters are fixed, thus, simplifying the design procedure to tuning of the fixed structure filters’ parameters. This approach results in simple and physically meaningful robust controllers that are easily implementable. The design method is based on mapping frequency domain performance specifications into a chosen controller parameter plane. Weighted sensitivity (nominal performance) and weighted complementary sensitivity (robust stability) function magnitude bounds are chosen as the frequency domain specifications to be mapped into controller parameter space here. The design method is illustrated numerically in the context of a servohydraulic material testing machine application available in the literature.


2013 ◽  
Vol 64 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Vojtech Veselý

The paper addresses the problem how to recognize a level of robust controller design and is aimed show the difficulties of implementation for practical use. In the first part of paper we introduce the survey of robust controller design for SISO systems with generalization design procedure for structured and unstructured uncertainties. The second part of paper is devoted to MIMO systems. In the frequency domain robust controller design procedure we reduce to independent design of SISO subsystems and in time domain the LMI or BMI approaches with polytopic system description are favorable.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Xingjian Wang ◽  
Shaoping Wang

Practical nonlinear systems can usually be represented by partly linearizable models with unknown nonlinearities and external disturbances. Based on this consideration, we propose a novel adaptive fuzzy robust control (AFRC) algorithm for such systems. The AFRC effectively combines techniques of adaptive control and fuzzy control, and it improves the performance by retaining the advantages of both methods. The linearizable part will be linearly parameterized with unknown but constant parameters, and the discontinuous-projection-based adaptive control law is used to compensate these parts. The Takagi-Sugeno fuzzy logic systems are used to approximate unknown nonlinearities. Robust control law ensures the robustness of closed-loop control system. A systematic design procedure of the AFRC algorithm by combining the backstepping technique and small-gain approach is presented. Then the closed-loop stability is studied by using small gain theorem, and the result indicates that the closed-loop system is semiglobally uniformly ultimately bounded.


Sign in / Sign up

Export Citation Format

Share Document