Towards a case-based computational model for the creative design of electromagnetic devices

2011 ◽  
Vol 60 (4) ◽  
pp. 485-496
Author(s):  
Jun Ouyang ◽  
David Lowther

Towards a case-based computational model for the creative design of electromagnetic devicesIn order to explore creativity in design, a computational model based on Case-Based Reasoning (CBR) (an approach to employing old experiences to solve new problems) and other soft computing techniques from machine learning, is proposed in this paper. The new model is able to address the four challenging issues: generation of a design prototype from incomplete requirements, judgment and improvement of system performance given a sparse initial case base library, extraction of critical features from a given feature space, adaptation of retrieved previous solutions to similar problems for deriving a solution to a given design task. The core principle within this model is that different knowledge from various level cases can be explicitly explored and integrated into a practical design process. In order to demonstrate the practical significance of our presented computational model, a case-based design system for EM devices, which is capable of deriving a new design prototype from a real-world device case base with high dimensionality, has been developed.

Author(s):  
Guanghsu A. Chang ◽  
Cheng-Chung Su ◽  
John W. Priest

Artificial intelligence (AI) approaches have been successfully applied to many fields. Among the numerous AI approaches, Case-Based Reasoning (CBR) is an approach that mainly focuses on the reuse of knowledge and experience. However, little work is done on applications of CBR to improve assembly part design. Similarity measures and the weight of different features are crucial in determining the accuracy of retrieving cases from the case base. To develop the weight of part features and retrieve a similar part design, the research proposes using Genetic Algorithms (GAs) to learn the optimum feature weight and employing nearest-neighbor technique to measure the similarity of assembly part design. Early experimental results indicate that the similar part design is effectively retrieved by these similarity measures.


Author(s):  
Jose M. Juarez ◽  
Susan Craw ◽  
J. Ricardo Lopez-Delgado ◽  
Manuel Campos

Case-Based Reasoning (CBR) learns new knowledge from data and so can cope with changing environments. CBR is very different from model-based systems since it can learn incrementally as new data is available, storing new cases in its case-base. This means that it can benefit from readily available new data, but also case-base maintenance (CBM) is essential to manage the cases, deleting and compacting the case-base. In the 50th anniversary of CNN (considered the first CBM algorithm), new CBM methods are proposed to deal with the new requirements of Big Data scenarios. In this paper, we present an accessible historic perspective of CBM and we classify and analyse the most recent approaches to deal with these requirements.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5118 ◽  
Author(s):  
Zhai ◽  
Martínez Ortega ◽  
Beltran ◽  
Lucas Martínez

As an artificial intelligence technique, case-based reasoning has considerable potential to build intelligent systems for smart agriculture, providing farmers with advice about farming operation management. A proper case representation method plays a crucial role in case-based reasoning systems. Some methods like textual, attribute-value pair, and ontological representations have been well explored by researchers. However, these methods may lead to inefficient case retrieval when a large volume of data is stored in the case base. Thus, an associated representation method is proposed in this paper for fast case retrieval. Each case is interconnected with several similar and dissimilar ones. Once a new case is reported, its features are compared with historical data by similarity measurements for identifying a relative similar past case. The similarity of associated cases is measured preferentially, instead of comparing all the cases in the case base. Experiments on case retrieval were performed between the associated case representation and traditional methods, following two criteria: the number of visited cases and retrieval accuracy. The result demonstrates that our proposal enables fast case retrieval with promising accuracy by visiting fewer past cases. In conclusion, the associated case representation method outperforms traditional methods in the aspect of retrieval efficiency.


2005 ◽  
Vol 20 (3) ◽  
pp. 267-269 ◽  
Author(s):  
WILLIAM CHEETHAM ◽  
SIMON SHIU ◽  
ROSINA O. WEBER

The aim of this commentary is to discuss the contribution of soft computing—a consortium of fuzzy logic, neural network theory, evolutionary computing, and probabilistic reasoning—to the development of case-based reasoning (CBR) systems. We will describe how soft computing has been used in case representation, retrieval, adaptation, reuse, and case-base maintenance, and then present a brief summary of six CBR applications that use soft computing techniques.


Sign in / Sign up

Export Citation Format

Share Document