case retrieval
Recently Published Documents


TOTAL DOCUMENTS

207
(FIVE YEARS 33)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yameng Wang ◽  
Liguo Fei ◽  
Yuqiang Feng ◽  
Yanqing Wang ◽  
Luning Liu

Abstract Case-based reasoning (CBR) is the retrieval of one or more similar cases from an existing case base for the problem to be solved according to the characteristics of the new problem. The core idea of CBR is that similar cases have similar solutions, so whether the CBR system can play a powerful advantage depends on the quality of case retrieval strategy. At present, the commonly used case retrieval algorithm is based on the mean operator method, which is very hard, and a certain local similarity is low will affect the overall result. In order to calculate the global similarity of cases from a new and softer point of view, this paper introduces the soft likelihood functions into case retrieval, combines the soft likelihood functions with KNN, and proposes a hybrid retrieval strategy. The core of the retrieval strategy is to define the global similarity through SLFs, aggregate the local similarity and characteristic similarity together, and also take the attitude characteristics of decision makers into consideration. Through simulation experiments on real data sets, the accuracy rate is more than 81%, which verifies the effectiveness of the retrieval strategy.


2021 ◽  
Vol 11 (10) ◽  
pp. 4494
Author(s):  
Qicai Wu ◽  
Haiwen Yuan ◽  
Haibin Yuan

The case-based reasoning (CBR) method can effectively predict the future health condition of the system based on past and present operating data records, so it can be applied to the prognostic and health management (PHM) framework, which is a type of data-driven problem-solving. The establishment of a CBR model for practical application of the Ground Special Vehicle (GSV) PHM framework is in great demand. Since many CBR algorithms are too complicated in weight optimization methods, and are difficult to establish effective knowledge and reasoning models for engineering practice, an application development using a CBR model that includes case representation, case retrieval, case reuse, and simulated annealing algorithm is introduced in this paper. The purpose is to solve the problem of normal/abnormal determination and the degree of health performance prediction. Based on the proposed CBR model, optimization methods for attribute weights are described. State classification accuracy rate and root mean square error are adopted to setup objective functions. According to the reasoning steps, attribute weights are trained and put into case retrieval; after that, different rules of case reuse are established for these two kinds of problems. To validate the model performance of the application, a cross-validation test is carried on a historical data set. Comparative analysis of even weight allocation CBR (EW-CBR) method, correlation coefficient weight allocation CBR (CW-CBR) method, and SA weight allocation CBR (SA-CBR) method is carried out. Cross-validation results show that the proposed method can reach better results compared with the EW-CBR model and CW-CBR model. The developed PHM framework is applied to practical usage for over three years, and the proposed CBR model is an effective approach toward the best PHM framework solutions in practical applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiaokang Han ◽  
Wenzhou Yan ◽  
Mei Lu

Industry is an important pillar of the national economy, and industrial projects are the most complex and difficult to manage and control in the construction industry; thus, the resource scheduling control of industrial projects is one of the core issues for industrial construction projects. The performance rate of the contract time periods of previous industrial construction projects has been very low. In scheduling control based on case-based reasoning (CBR), the goal is to implement preventive measures by referring to existing scheduling control cases and control the scheduling of resources through reasoning on emergency measures to prevent scheduling control deviations. In this paper, the rough set approach is used to represent the case feature information in a case reasoning model for industrial project scheduling control, attribute reduction is used to determine the weights of the feature attributes in the rough set representation, and the similarity between cases is calculated for case retrieval. The accuracy of the rough-set-based similarity calculation is verified through matrix similarity calculations and a visual analysis of the all closeness centrality and weighted all degree centrality of the corresponding complex network; thus, similar cases of industrial project scheduling control are identified. To verify the applicability and effectiveness of the proposed methodology, a typical coal chemical general contract project case is carried out. The rough set comprehensive similarity results were 0.733, 0.621, 0.536, 0.614, 0.559, 0.950, 0.708, 0.546, 0.733, 0.664, 0.526, and 0.743, and the matrix similarity results were 0.417, 0.583, 0.417, 0.417, 0.417, 0.833, 0.417, 0.500, 0.417, 0.500, 0.333, and 0.500. The results showed that the case retrieval accuracy of traditional matrix similarity is not as high as the rough set comprehensive similarity, so X 6 is the most similar case to the target case Y. Case retrieval results indicate that the proposed methodology can provide a good similar case selection strategy with project managers, and the final required preventive measures for the target case can be found. Based on the identified similar cases, preventive measures for scheduling control are formulated to effectively prevent scheduling deviations of industrial projects.


2021 ◽  
pp. 1-13
Author(s):  
Kai Zhang ◽  
Jing Zheng ◽  
Ying-Ming Wang

Case-based reasoning (CBR) is one of the most popular methods used in emergency decision making (EDM). Case retrieval plays a key role in EDM processes based on CBR and usually functions by retrieving similar historical cases using similarity measurements. Decision makers (DMs), thus, choose the most appropriate historical cases. Although uncertainty and fuzziness are present in the EDM process, in-depth research on these issues is still lacking. In this study, a heterogeneous multi-attribute case retrieval method based on group decision making (GDM) with incomplete weight information is developed. First, the case similarities between historical and target cases are calculated, and a set of similar historical cases is constructed. Six formats of case attributes are considered, namely crisp numbers, interval numbers, linguistic variables, intuitionistic fuzzy numbers, single-valued neutrosophic numbers (NNs) and interval-valued NNs. Next, the evaluation information from the DMs is expressed using single-valued NNs. Additionally, the evaluation utilities of similar historical cases are obtained by aggregating the evaluation information. The comprehensive utilities of similar historical cases are obtained using case similarities and evaluation utilities. In this process, the weights of incomplete information are determined by constructing optimization models. Furthermore, the most appropriate similar historical case is selected according to the comprehensive utilities. Finally, the proposed method is demonstrated using two examples; its performance is then compared with those of other similar methods to demonstrate its validity and efficacy.


Sign in / Sign up

Export Citation Format

Share Document