scholarly journals Predicting thermal sensation through local body skin temperatures to assess thermal comfort: a short systematic review

Author(s):  
R. P. Martins ◽  
Daniele Costa ◽  
J. C. Guedes
2021 ◽  
Author(s):  
Bin Yang ◽  
Tze-Huan Lei ◽  
Faming Wang ◽  
Pengfei Yang

Face and neck cooling has been found effective to improve thermal comfort during exercise in the heat despite the surface area of human face and neck regions accounts for only 5.5% of the entire body. Presently, very limited work in the literature has been reported on face and neck cooling to improve indoor thermal comfort. In this work, two energy-efficient wearable face and neck cooling fans were used to enhance occupant thermal comfort in two warm indoor conditions (30 & 32 °C). Local skin temperatures and perceptual responses while using those two wearable cooling fans were examined and compared. Results showed that both cooling fans could largely reduce local skin temperatures at the forehead, face and neck regions up to 2.1 °C. Local thermal sensation votes at the face and neck were decreased by 0.82-1.21 scale unit at two studied temperatures. Overall TSVs dropped by 1.03-1.14 and 1.34-1.66 scale unit at 30 and 32 °C temperatures, respectively. Both cooling fans could extend the acceptable HVAC temperature setpoint to 32.0 °C, resulting in an average energy saving of 45.7% as compared to the baseline HVAC setpoint of 24.5 °C. Further, the free-control cooling mode is recommended to occupants for further improving thermal comfort while using those two types of wearable cooling fans indoors. Lastly, it is concluded that those two wearable cooling fans could greatly improve thermal comfort and save HVAC energy despite some issues on dry eyes and dry lips associated with those wearable cooling fans were noted.


2019 ◽  
Vol 111 ◽  
pp. 02004 ◽  
Author(s):  
Xiaojie Zhou ◽  
Sumei Liu ◽  
Xuan Liu ◽  
Xiaorui Lin ◽  
Ke Qing ◽  
...  

Thermal environment in residential kitchen in China is transient and non-uniform and with strong radiation asymmetry from gas stove. Due to the complexity of kitchen thermal environment, it is not sure if previous thermal comfort models can accurately predict the thermal comfort in residential kitchens. In order to evaluate if existing thermal comfort models can be applied for Chinese kitchens, this investigation conducted human subject tests for 20 cooks when preparing dishes in a kitchen. The study measured skin temperatures of the cooks and environmental parameters and used questionnaires to obtain their thermal sensation votes at the same time. The actual thermal sensation votes were compared with the predicted ones by four thermal comfort models: predicted mean vote (PMV) model, dynamic thermal sensation (DTS) model, the University of California at Berkeley (UCB) model, and the transient outdoor thermal comfort model from Lai et al. The results showed that all the models could predict the trend of the thermal sensations but with errors. The PMV model overpredicted the thermal sensations. The UCB and Lai’s models showed a slower change in thermal sensation votes (TSV) after turning on the stove. The DTS model was more accurate than the others in predicting the mean thermal sensation, but with a large variation in predicting individual thermal sensation votes. A better thermal comfort model should be developed for Chinese residential kitchens.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8077
Author(s):  
Bin Yang ◽  
Tze-Huan Lei ◽  
Pengfei Yang ◽  
Kaixuan Liu ◽  
Faming Wang

Face and neck cooling has been found effective in improving thermal comfort during exercise in the heat despite the fact that the surface area of human face and neck regions accounts for only 5.5% of the entire body. Presently very little documented research has been conducted to investigate cooling the face and neck only to improve indoor thermal comfort. In this study, two highly energy efficient wearable face and neck cooling fans were used to improve occupant thermal comfort in two warm indoor conditions (30 and 32 °C). Local skin temperatures and perceptual responses while using the two wearable cooling fans were examined and compared. Results showed that both cooling fans could significantly reduce local skin temperatures at the forehead, face and neck regions by up to 2.1 °C. Local thermal sensation votes at the face and neck were decreased by 0.82–1.21 scale unit at the two studied temperatures. Overall TSVs decreased by 1.03–1.14 and 1.34–1.66 scale units at 30 and 32 °C temperatures, respectively. Both cooling fans could raise the acceptable HVAC temperature setpoint to 32.0 °C, resulting in a 45.7% energy saving over the baseline HVAC setpoint of 24.5 °C. Furthermore, occupants are advised to use the free-control cooling mode when using those two types of wearable cooling fans to improve thermal comfort. Finally, despite some issues on dry eyes and dry lips associated with those wearable cooling fans, it is concluded that those two highly energy-efficient wearable cooling fans could greatly improve thermal comfort and save HVAC energy.


1998 ◽  
Author(s):  
Margaret A. Kolka ◽  
Christina M. Kesick ◽  
Leslie Levine ◽  
Sharon A. McBride ◽  
Lou A. Stephenson

IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 36266-36281
Author(s):  
Ziyang Wang ◽  
Hiroshi Onodera ◽  
Ryuji Matsuhashi

Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 326
Author(s):  
Wiwik Budiawan ◽  
Kazuyo Tsuzuki

Thermal comfort is crucial in satisfaction and maintaining quality sleep for occupants. In this study, we investigated the comfort temperature in the bedroom at night and sleep quality for Indonesian students during summer and winter. Eighteen male Indonesian students aged 29 ± 4 years participated in this study. The participants had stayed in Japan for about six months. We evaluated the sleep parameters using actigraphy performed during summer and winter. All participants completed the survey regarding thermal sensation, physical conditions, and subjective sleepiness before sleep. The temperature and relative humidity of participants’ bedrooms were also measured. We found that the duration on the bed during winter was significantly longer than that during summer. However, sleeping efficiency during winter was significantly worse than that during summer. The bedroom temperature of the participants was in the range of comfort temperature in Indonesia. With the average bedroom air temperature of 22.2 °C, most of the participants still preferred “warm” and felt “slightly comfortable” during winter. The average comfort temperature each season calculated using the Griffiths method was 28.1 °C during summer and 23.5 °C during winter. In conclusion, differences in adaptive action affect bedroom thermal conditions. Furthermore, habits encourage the sleep performance of Indonesian students.


2019 ◽  
Vol 111 ◽  
pp. 04056
Author(s):  
Loes Visser ◽  
Boris Kingma ◽  
Eric Willems ◽  
Wendy Broers ◽  
Marcel Loomans ◽  
...  

Studies indicate that the energy performance gap between real and calculated energy use can be explained for 80% by occupant behaviour. This human factor may be composed of routine and thermoregulatory behaviour. When occupants do not feel comfortable due to high or low operative temperatures and resulting high or low skin temperatures, they are likely to exhibit thermoregulatory behaviour. The aim of this study is to monitor and understand this thermoregulatory behaviour of the occupant. This is a detailed study of two females living in a rowhouse in the city of Heerlen (Netherlands). During a monitoring period of three weeks over a time span of three months the following parameters were monitored: activity level, clothing, micro climate, skin temperatures and thermal comfort and sensation. Their micro climate was measured at five positions on the body to assess exposed near body conditions and skin temperature. Every two hours they filled in a questionnaire regarding their thermal comfort and sensation level (7-point scale), clothing, activities and thermoregulatory behaviour. The most comfortable (optimal) temperature was calculated for each person by adopting a biophysical model, a thermoneutral zone model. This study shows unique indivual comfort patterns in relation to ambient conditions. An example is given how this information can be used to calculate the buildings energy comsumption.


Sign in / Sign up

Export Citation Format

Share Document