scholarly journals Design of Orthogonal Variable Spreading Factor (OVSF) Performance Simulation Program in Multipath Fading Channels

2020 ◽  
Vol 4 (2) ◽  
pp. 64
Author(s):  
I Gede Arya Gangga Gajanada ◽  
Nyoman Pramaita ◽  
I Gusti Agung Komang Diafari Djuni Hartawan

The characteristics of wireless channel are determined by multipath propagation. The transmitted signal will be scattered so that it produces fading. Fading influenced by multipath component will cause delay spread which damages the signal. Thus, spread spectrum technology is used by using a bandwidth that is greater than the original signal. The objective of this study was to determine the effect of the number of multipath components on orthogonal variable spreading factor (OVSF) codes on multipath fading channels viewed from values and Bit Error Rate (BER) graphs versus Energy Bits per Noise (Eb/No). This study would compare the performance of OVSF code communication system on multipath channels by varying multipath components of 4, 8, 12, 16 and the length of OVSF codes used of 16, 8 and 4. The simulation results showed an increase in BER values when the number of multipath components was added. The more the number of multipath components used, the more the number of reflected signals that will interfere with the desired signal in the receiver. The length of the OVSF code influences the performance of the OVSF code on the multipath fading channel, because each code has a different processing gain value that is affected by the length of the code used

2005 ◽  
Vol 15 (12) ◽  
pp. 4027-4033 ◽  
Author(s):  
YONGXIANG XIA ◽  
CHI K. TSE ◽  
FRANCIS C. M. LAU ◽  
GÉZA KOLUMBÁN

Multipath performance is an important consideration for chaos-based communication systems. In this letter, the performance of the FM-DCSK communication system over multipath fading channels is evaluated by computer simulations. Both Rayleigh fading and Ricean fading are considered, and the low-pass equivalent model of the FM-DCSK system is used in the simulation. Based on this model, we analyze the bit error performance of the system and the effects of system parameters on the bit-error performance.


2019 ◽  
Vol 3 (1) ◽  
pp. 19
Author(s):  
Pebri Yeni Samosir ◽  
Nyoman Pramaita ◽  
I Gst A. Komang Diafari Djuni Hartawan ◽  
Ni Made Ary Esta Dewi Wirastuti

Multiple Input Multiple Output (MIMO) technology is a technique that can be used to overcome multipath fading. The multipath fading is caused by signals coming from several paths that experience different attenuations, delays and phases. In a multipath condition, an impulse that sent by the transmitter, will be received by the recipient not as an impulse but as a pulse with a spread width that called delay spread. Delay spread can cause intersymbol interference (ISI) and bit translation errors from the information received. To determine the effect of delay spread on the MIMO system, then MIMO system performance research was performed on flat fading and frequency selective fading channels using the Space Time Block Code (STBC) coding technique. This research was conducted using MatLab 2018a software. The simulation results show that the MIMO STBC system performance on flat fading channels is better than the MIMO STBC system performance on the frequency selective fading channel. This result is analyzed based on the value of BER vs. Eb/No and eye diagram.


2005 ◽  
Vol 53 (1) ◽  
pp. 182-192 ◽  
Author(s):  
S.-M. Phoong ◽  
Yubing Chang ◽  
Chun-Yang Chen

Sign in / Sign up

Export Citation Format

Share Document