scholarly journals A Analisis Kinerja PLTD Dual-Fuel Di PT. Indonesia Power UBP Bali

Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
I Gede Kusuma Putra ◽  
I Gusti Bagus Wijaya Kusuma ◽  
I Made Dwi Budiana Penindra

Penelitian kinerja PLTD dual-fuel berbahan bakar solar dan gas hasil gasifikasi bambu di PT. Indonesia Power UBP Bali ini bertujuan untuk mengetahui kemampuan bambu agar mampu mengurangi penggunaan bahan bakar solar yang kini ketersediaannya semakin menispis dengan menggunakan sistem dual-fuel pada pembangkit listrik tenaga diesel. Pengukuran dilakukan dengan mengukur laju alir udara pembakaran dengan bukaan 0%, 50% dan 100%, laju alir gas produser (syngas), konsumsi bahan bakar spesifik, dan daya genset, serta rasio beban listrik yang diberikan 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100% dengan kapasitas genset 40 kW. Data yang didapatkan menunjukkan daya yang dihasilkan dari mode dual-fuel lebih besar yaitu 36,6 kW, dan konsumsi bahan bakar yang lebih sedikit yaitu 6,55 L/jam dengan 100% bukaan valve udara pembakaran.Substitusi penggunaan bahan bakar syngas terhadap bahan bakar solar mampu mengurangi total penggunaan bahan bakar solar sebesar 47,3%. Research on the performance of dual-fuel diesel power plant with diesel fuel and bamboo gasification gas in PT. Indonesia Power UBP Bali aims to determine the ability of bamboo to be able to reduce the use of diesel fuel which is now the availability is running low, by using a dual-fuel system in a diesel power plant. Measurements were made by measuring the combustion air flow with openings of 0%, 50% and 100%, producer gas flow rate (syngas), specific fuel consumption, and generator power, and the ratio of electrical loads given 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, with a generator capacity of 40 kW. The data obtained shows that the power produced from the dual-fuel mode is greater at 36.6 kW, and less fuel consumption of 6.55 L/h with 100% combustion air valve openings.The substitution for the use of syngas fuel for diesel fuel is able to reduce the total use of diesel fuel by 47.3%.

Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 37
Author(s):  
I Gede Suparsa Adnyana ◽  
Gusti Bagus Wijaya Kusuma ◽  
I Gusti Agung Kade Suriadi

Telah dilakukan penelitian tentang pengaruh dual-fuel hasil gasifikasi bahan bakar biomasa terhadap daya keluaran pada mesin diesel kapasitas 40 kW. Penelitian ini bertujuan untuk mengetahui pengaruh aliran gas hasil gasifikasi biomasa sampah campuran perkotaan terhadap daya keluaran pada mesin diesel kapasitas 40 kW. Pengukuran dilakukan dengan mengukur laju udara pembakaran bukaan 0 %, 50 % dan 100%, laju alir syngas, konsumsi bahan bakar spesifik, daya yang dihasilkan dan beban listrik yang diberikan 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%. Data menunjukan bahwa penggunaan, dual-fuel menghasilkan daya keluaran yang lebih besar dibandingkan dan juga mengurangi penggunaan solar sebesar 53.25% dibandingkan single-fuel. Sedangkan dengan membandingkan konsumsi bahan bakar total antara Bukaan Penuh dan Setengah, Bukaan Setengah untuk menghasilkan daya yang sama dengan Bukaan Penuh pada rasio beban 100% yaitu 36.6 kW perlu melakukan pengoperasian lebih banyak 3.05 kali namun mampu mengurangi konsumsi bahan bakar total sejumlah 5.835 kg/Jam. Research on the effect of dual-fuel biomass fuel gasification results on the output power of diesel engines with a capacity of 40 kW. This study aims to determine the effect of gas flow from urban mixed biomass gasification results on the output power of diesel engines with a capacity of 40 kW. Measurements were made by measuring the open air combustion rate of 0%, 50% and 100%, syngas flow rate, specific fuel consumption, power generated and electrical loads given 0%, 10%, 20%, 30%, 40%, 50 %, 60%, 70%, 80%, 90%, 100%. Data shows that the use of dual-fuel produces greater output power and also reduces diesel fuel use by 53.25% compared to single-fuel. Whereas by comparing the total fuel consumption between Full and Half Openings, Half Openings to produce the same power as Full Openings at a load ratio of 100%, which is 36.6 kW, it needs to do more operation 3.05 times but is able to reduce the total fuel consumption by 5,835 kg / hour .


2004 ◽  
Vol 30 (6) ◽  
pp. 758-761
Author(s):  
Tomio MIMURA ◽  
Yasuyuki YAGI ◽  
Masaki IIJIMA ◽  
Ryuji YOSIYAMA ◽  
Takahito YONEKAWA

2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


2018 ◽  
Vol 9 (2) ◽  
pp. 49
Author(s):  
S Suhartono ◽  
Herri Susanto ◽  
Dwiwahju Sasongko ◽  
Azis Trianto

Determination of Henry’s constant for toluene and benzene in oils and water were carried out in a bubbling bottle with diameter of 3 cm. Air containing toluene vapour or benzene vapour was bubbled through 50 mL absorbing liquid. The gas flow rate was 13.6 mL/min. By measuring the concentration of toluene or benzene in the inlet and outlet gas stream, we were able to calculate their concentrations in absorbing liquid. We found that the value of Henry’s constant of toluene in lubrication oil and palm oil at 30 oC were 155 and 145 respectively (H= CG/CL, with CG in mol/L and CL in mol/L). We also found that the absorption capacities were in the order (from the highest) of: lubrication oil, palm oil, and sunflower oil. Henry’s constant of toluene in water was at about 4 which was much lower than those of oils.Keyword: absorption, Henry’s constant, toluene, benzene, producer gas AbstrakPengukuran konstanta Henry sistem toluen dan benzen dalam minyak dan air dilakukan melalui percobaan absorpsi di dalam sebuah kolom gelembung dengan diameter 3 cm. Minyak sawit, minyak bunga matahari, minyak pelumas dan air digunakan sebagai absorben. Toluen dan benzen dipilih sebagai tar model. Gas model yang tersusun dari udara dan uap toluen atau benzen digelembungkan ke dalam absorben 50 mL. Absorpsi dilakukan pada suhu 30 dan 60 oC dan laju alir gas model 13,6 mL/min. Analisa dilakukan terhadap konsentrasi aliran gas model sebelum dan sesudah absorpsi. Analisa tersebut dilakukan dengan kromatografi gas Shimadzu GC-8APF. Konstanta Henry dihitung sebagai H=CG/CL dan H=P/CL. Nilai 1/H sistem toluen-minyak pelumas dan toluen-minyak sawit pada suhu 30 oC dan laju alir gas 13,6 mL/min berturut-turut adalah 155 dan 145 (untuk CG dalam mol/L dan CL dalam mol/L). Merujuk pada nilai-nilai konstanta Henry hasil percobaan, minyak pelumas dan minyak sawit merupakan cairan penyerap yang paling cocok untuk toluen dan benzen sebagai representasi tar dalam gas hasil gasifikasi. Urutan besarnya kapasitas absorpsi cairan penyerap terhadap toluen dan benzen adalah sebagai berikut (berturut-turut dari yang besar): minyak pelumas, minyak sawit, minyak bunga matahari dan air. Konstanta Henry toluen dalam air berada pada kisaran 4, yang menunjukkan bahwa kapasitas absorpsi toluen dalam air lebih rendah dibandingkan kapasitas absorpsi toluen dalam minyak.Kata Kunci: absorpsi, konstanta Henry, toluen, benzen, gas produser


Jurnal METTEK ◽  
2019 ◽  
Vol 5 (1) ◽  
pp. 26
Author(s):  
A.A Ngurah Wisnu Kusuma ◽  
I Gusti Bagus Wijaya Kusuma ◽  
A.A.I.A.S Komaladewi

Telah dilakukan penelitian tentang kinerja pembangkit listrik dual-fuel 40 kW berbahan bakar solar dan bahan bakar hasil gasifikasi dari limbah sabut kelapa. Penelitian ini bertujuan untuk mengetahui konfigurasi laju alir udara pembakaran (AFR) terhadap daya keluaran mesin diesel dan penghematan minyak solar yang dihasilkan. Pengukuran dilakukan dengan mengukur konsumsi bahan bakar solar, laju alir gas produser, daya genset, dan konsumsi sabut kelapa pada bukaan valve inlet udara pembakaran setengah dan penuh dengan pemberian beban listrik 0-100%. Data menunjukan bahwa konfigurasi laju alir udara pembakaran (AFR) yang baik digunakan adalah bukaan setengah dan kinerja mesin diesel dual-fuel menggunakan bahan bakar biomassa sabut kelapa mampu mengurangi konsumsi solar sebesar 41.4% Research on the performance of 40 kW dual-fuel power plants with diesel fuel and gasification fuel from coconut fiber waste. This study aims to determine the configuration of combustion air flow rate (AFR) on diesel engine output power and saving diesel fuel produced. Measurements were made by measuring diesel fuel consumption, producer gas flow rate, generator power, and coconut fiber consumption at the opening of the half and full combustion air inlet valve by providing 0-100% electric load. Data shows that the configuration of the combustion air flow rate (AFR) good to use is the half openings and the performance of dual-fuel diesel engines using coconut fiber biomass fuel can reduce diesel consumption by 41.4%


EKUILIBIUM ◽  
2015 ◽  
Vol 14 (2) ◽  
Author(s):  
Sunu Herwi Pranolo

<p>Abstract: Producer gas from rice husk gasification is the potential gaseous fuel for partially<br />substituting diesel fuel demand as it contains combustible gases (CO, H<br />2<br />). This<br />research examined the effects of air flow rate entering the diesel engine and electrical load on<br />diesel fuel consumption, electrical power of generator, and rice husk specific consumption in<br />gasifier. Gasification process took place in a downdraft air-blown gasifier with 10 cm throat<br />diameter. At rice husk consumption rate of 1 kg/hour and temperature of 827<br />C, the Specific<br />Gasification Rate (SGR) was 81.53 kg/(m<br />.hour) and the solid residue was 36% (w/w) of input<br />biomass. Total combustible gas content in producer gas was 21.6%. It was observed that diesel<br />fuel saving of 9.32% was obtained at air flow rate of 1.55 × 10<br />2<br />-3<br />m<br />/s and electrical load of 95%<br />from maximum generator power. Using producer gas at flow rate of 0.91 × 10<br />3<br />/s caused<br />generator de-rating of 8.33% at electrical load of 10%. Generating 1 kWh of electricity at air flow<br />rate of 2.99 × 10<br />-3<br />m<br />/s and electrical load of 95% required 1.85 kg of rice husk. A kilogram of<br />rice husk may substitute 0.26 L of diesel fuel at this air flow rate and load.<br />3<br />Keywords: rice husk; gasification; dual-fuel; specific consumption; de-rating<br />, and CH<br />4<br />o<br />-3<br />m<br />3</p>


Author(s):  
Şenol Durmuşoğlu ◽  
ERGİN KOSA

To logistically maintain a fuel supply is a certain issue for the military. NATO prefers single fuel concept to cancel out troubles in fuel transport and storage. To overcome this problem, kerosene-based F-34 jet fuel used in aviation has been chosen as a single fuel for a land-based vehicle in this research. In the study, feasibility of using F-34 jet fuel in a diesel engine has been investigated and the performance of the jet fuel has been compared with a conventional F-54 diesel fuel. The engine parameters of M52 such as power and torque character for both F-34 jet fuel and F-54 diesel fuel has been achieved. Also, the experiments on diesel engine including fuel consumption measurements under certain engine speeds and torques has been done for both fuels. Moreover, wear on fuel pumps of Magirus Unimog and M.A.N truck has been measured during long term tests operating with F-34 and F-54 fuels, respectively. It is observed that there is no certain difference in engine power and torque character between using F-34 and F-54 fuel.


2021 ◽  
Author(s):  
◽  
Luke James Frogley

<p>Rising costs of diesel fuel has led to an increased interest in dual fuel diesel engine conversion, which can offset diesel consumption though the simultaneous combustion of a secondary gaseous fuel. This system offers benefits both environmentally and financially in an increasingly energy-conscious society. Dual fuel engine conversions have previously been fitted to mechanical injection systems, requiring physical modification of the fuel pump. The aim of this work is to develop a novel electronic dual fuel control system that may be installed on any modern diesel engine using common rail fuel injection with solenoid injector valves, eliminating the need for mechanical modification of the diesel fuel system.  The dual fuel electronic control unit developed replaces up to 90 percent of the diesel fuel required with cleaner-burning and cheaper compressed natural gas, providing the same power output with lower greenhouse gas emissions than pure diesel. The dual fuel system developed controls the flow of diesel, gas, air, and engine timing to ensure combustion is optimised to maintain a specific torque at a given speed and demand. During controlled experimental analysis, the dual fuel system exceeded the target substitution rate of 90 precent, with a peak diesel substitution achieved of 97 percent, whilst maintaining the same torque performance of the engine under diesel operation.</p>


Sign in / Sign up

Export Citation Format

Share Document