scholarly journals Optimisation of Linear Passive Suspension System Using MOPSO and Design of Predictive Tool with Artificial Neural Network

2019 ◽  
Vol 28 (1) ◽  
pp. 105-110 ◽  
Author(s):  
J. NIRESH ◽  
N. ARCHANA ◽  
G. ANAND RAJ
2019 ◽  
Vol 1 (6) ◽  
Author(s):  
Mahesh P. Nagarkar ◽  
M. A. El-Gohary ◽  
Yogesh J. Bhalerao ◽  
Gahininath J. Vikhe Patil ◽  
Rahul N. Zaware Patil

2021 ◽  
Vol 15 (1) ◽  
pp. 7648-7661
Author(s):  
M. F. Yakhni ◽  
M. A. El-Gohary ◽  
M. N. Ali

Suspension system design is an important challenging duty that facing car manufacturers, so the challenge has become to design the best system in terms of providing ride comfort and handling ability under all driving situations. The goal of this paper is to provide assistance in enhancing the effectiveness of the suspension system. A full car model with eight degrees of freedom (DOF) was developed using MATLAB/Simulink. Validation of the Simulink model was obtained. The model was assumed to travel over a speed hump that has a half sine wave shape and amplitude that changing from 0.01 to 0.2 m. The vehicle was moving with variable speeds from 20 to 120 km/h. Magneto Rheological (MR) damper was implanted to the model to study its effect on ride comfort. Artificial Neural Network (ANN) was used to find the optimum voltage value applied to the MR damper, to skip the hump at least displacement. This network uses road profile and the vehicle speed as inputs. A comparison of the results for passive suspension system and model with MR damper, are illustrated. Results show that the MR damper give significant improvements of the vehicle ride performance over the passive suspension system.


2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.


2007 ◽  
Vol 8 (4) ◽  
pp. 321-336 ◽  
Author(s):  
N Hashemi ◽  
N. N. Clark

An artificial neural network (ANN) was trained on chassis dynamometer data and used to predict the oxides of nitrogen (NO x), carbon dioxide (CO2), hydrocarbons (HC), and carbon monoxide (CO) emitted from heavy-duty diesel vehicles. Axle speed, torque, their derivatives in different time steps, and two novel variables that defined speed variability over 150 seconds were defined as the inputs for the ANN. The novel variables were used to assist in predicting off-cycle emissions. Each species was considered individually as an output of the ANN. The ANN was trained on the Highway cycle and applied to the City/Suburban Heavy Vehicle Route (CSHVR) and Urban Dynamometer Driving Schedule (UDDS) with four different sets of inputs to predict the emissions for these vehicles. The research showed acceptable prediction results for the ANN, even for the one trained with only eight inputs of speed, torque, their first and second derivatives at one second, and two variables related to the speed pattern over the last 150 seconds. However, off-cycle operation (leading to high NO x emissions) was still difficult to model. The results showed an average accuracy of 0.97 for CO2, 0.89 for NO x, 0.70 for CO, and 0.48 for HC over the course of the CSHVR, Highway, and UDDS.


Author(s):  
Anis Hamza ◽  
Noureddine Ben Yahia

The active control of a suspension system is meant to provide an isolated behavior of the system spring-mass (for example, increased comfort and performance). During this article, we are going to explain the importance of developing an intelligent control approach for active truck suspensions based on the artificial neural network. From where the main objective of this article is to obtain a mathematical model for active suspension systems then build a hydraulic model for active suspension control for trucks using an artificial neural network. In this article, a corresponding artificial neural network nonlinear active suspension controller has been designed and optimized for approximate road profiles, using simulation according to International Organization for Standardization 2631-5 and International Organization for Standardization 8608 standardizations. The model developed with MATLAB Toolbox, estimated and validated from data collected during tests carried out with a truck in other research work. To model the system, the laws of physics are used to describe the system and experimental data or information supplied about the system to determine the parameters of the system. The statement of the problem of this research is to develop a robust artificial neural network controller for the nonlinear active suspension system of the heavy truck that can improve the performances and its verifications using graphical and simulation output. The results of the simulation show that the methodology offers excellent performance. In addition, the robustness of the artificial neural network hydraulic controller is demonstrated for a variety of road profiles that increase the capabilities of the proposed methodology and prove its effectiveness.


2021 ◽  
Vol 411 ◽  
pp. 157-168
Author(s):  
Jacqueline A. Richard ◽  
Norazzlina M. Sa’don ◽  
Abdul Razak Abdul Karim

Geotechnical structures, design of embankment, earth and rock fill dam, tunnels, and slope stability require further attention in determining the shear strength of soil and other parameters that govern the result. The shear strength of soil commonly obtained by conducting laboratory testing such as Unconfined Compression Strength (UCS) Test and Unconsolidated Undrained (UU) Test. However, random errors and systematic errors can occur during experimental works and caused the findings imprecise. Besides, the laboratory test also consuming a lot of time and some of them are quite costly. Therefore, soft computational tools are developed to improve the accuracy of the results and time effectively when compared to conventional method. In this study, Artificial Neural Network (ANN) was employed to develop a predictive model to correlate the moisture content (MC), liquid limit (LL), plastic limit (PL), and liquidity index (LI) of cohesive soil with the undrained shear strength of soil. A total of 10 databases was developed by using MATLAB 7.0 - matrix laboratory with 318 of UCS tests and 451 of UU tests which are collected from the verified site investigation (SI) report, respectively. All the SI reports collected were conducted in Sarawak, Malaysia. The datasets were split into ratio of 3:1:1 which is 60:20:20 (training: validation: testing) with one hidden layer and eight hidden neurons. The input parameter of Liquidity index (LI) has shown the highest R-value (regression coefficient) which are 0.926 and 0.904 for UCS and UU model, respectively. In addition, the predictive models were tested and compare with the predicted and observed cohesion obtained from the collected experimental results. In summary, the ANN has the feasibility to be used as a predictive tool in estimating the shear strength of the soil.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document