scholarly journals Artificial Neural Network (ANN) Model for Shear Strength of Soil Prediction

2021 ◽  
Vol 411 ◽  
pp. 157-168
Author(s):  
Jacqueline A. Richard ◽  
Norazzlina M. Sa’don ◽  
Abdul Razak Abdul Karim

Geotechnical structures, design of embankment, earth and rock fill dam, tunnels, and slope stability require further attention in determining the shear strength of soil and other parameters that govern the result. The shear strength of soil commonly obtained by conducting laboratory testing such as Unconfined Compression Strength (UCS) Test and Unconsolidated Undrained (UU) Test. However, random errors and systematic errors can occur during experimental works and caused the findings imprecise. Besides, the laboratory test also consuming a lot of time and some of them are quite costly. Therefore, soft computational tools are developed to improve the accuracy of the results and time effectively when compared to conventional method. In this study, Artificial Neural Network (ANN) was employed to develop a predictive model to correlate the moisture content (MC), liquid limit (LL), plastic limit (PL), and liquidity index (LI) of cohesive soil with the undrained shear strength of soil. A total of 10 databases was developed by using MATLAB 7.0 - matrix laboratory with 318 of UCS tests and 451 of UU tests which are collected from the verified site investigation (SI) report, respectively. All the SI reports collected were conducted in Sarawak, Malaysia. The datasets were split into ratio of 3:1:1 which is 60:20:20 (training: validation: testing) with one hidden layer and eight hidden neurons. The input parameter of Liquidity index (LI) has shown the highest R-value (regression coefficient) which are 0.926 and 0.904 for UCS and UU model, respectively. In addition, the predictive models were tested and compare with the predicted and observed cohesion obtained from the collected experimental results. In summary, the ANN has the feasibility to be used as a predictive tool in estimating the shear strength of the soil.

2008 ◽  
Vol 5 (1) ◽  
pp. 183-218 ◽  
Author(s):  
N. Q. Hung ◽  
M. S. Babel ◽  
S. Weesakul ◽  
N. K. Tripathi

Abstract. The present study developed an artificial neural network (ANN) model to overcome the difficulties in training the ANN models with continuous data consisting of rainy and non-rainy days. Among the six models analyzed the ANN model which used generalized feedforward type network and a hyperbolic tangent function and a combination of meteorological parameters (relative humidity, air pressure, wet bulb temperature and cloudiness), and the rainfall at the point of forecasting and rainfall at the surrounding stations, as an input for training of the model was found most satisfactory in forecasting rainfall in Bangkok, Thailand. The developed ANN model was applied to derive rainfall forecast from 1 to 6 h ahead at 75 rain gauge stations in the study area as forecast point from the data of 3 consecutive years (1997–1999). Results were highly satisfactory for rainfall forecast 1 to 3 h ahead. Sensitivity analysis indicated that the most important input parameter beside rainfall itself is the wet bulb temperature in forecasting rainfall. Based on these results, it is recommended that the developed ANN model can be used for real-time rainfall forecasting and flood management in Bangkok, Thailand.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1022
Author(s):  
Yondha Dwika Arferiandi ◽  
Wahyu Caesarendra ◽  
Herry Nugraha

Heat rate of a combined cycle power plant (CCPP) is a parameter that is typically used to assess how efficient a power plant is. In this paper, the CCPP heat rate was predicted using an artificial neural network (ANN) method to support maintenance people in monitoring the efficiency of the CCPP. The ANN method used fuel gas heat input (P1), CO2 percentage (P2), and power output (P3) as input parameters. Approximately 4322 actual operation data are generated from the digital control system (DCS) in a year. These data were used for ANN training and prediction. Seven parameter variations were developed to find the best parameter variation to predict heat rate. The model with one input parameter predicted heat rate with regression R2 values of 0.925, 0.005, and 0.995 for P1, P2, and P3. Combining two parameters as inputs increased accuracy with regression R2 values of 0.970, 0.994, and 0.984 for P1 + P2, P1 + P3, and P2 + P3, respectively. The ANN model that utilized three parameters as input data had the best prediction heat rate data with a regression R2 value of 0.995.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Abolghasem Daeichian ◽  
Rana Shahramfar ◽  
Elham Heidari

Abstract Lime is a significant material in many industrial processes, including steelmaking by blast furnace. Lime production through rotary kilns is a standard method in industries, yet it has depreciation, high energy consumption, and environmental pollution. A model of the lime production process can help to not only increase our knowledge and awareness but also can help reduce its disadvantages. This paper presents a black-box model by Artificial Neural Network (ANN) for the lime production process considering pre-heater, rotary kiln, and cooler parameters. To this end, actual data are collected from Zobahan Isfahan Steel Company, Iran, which consists of 746 data obtained in a duration of one year. The proposed model considers 23 input variables, predicting the amount of produced lime as an output variable. The ANN parameters such as number of hidden layers, number of neurons in each layer, activation functions, and training algorithm are optimized. Then, the sensitivity of the optimum model to the input variables is investigated. Top-three input variables are selected on the basis of one-group sensitivity analysis and their interactions are studied. Finally, an ANN model is developed considering the top-three most effective input variables. The mean square error of the proposed models with 23 and 3 inputs are equal to 0.000693 and 0.004061, respectively, which shows a high prediction capability of the two proposed models.


Author(s):  
Hadjira Maouz ◽  
◽  
Asma Adda ◽  
Salah Hanini ◽  
◽  
...  

The concentration of carbonyl is one of the most important properties contributing to the detection of the thermal aging of polymer ethylene propylene diene monomer (EPDM). In this publication, an artificial neural network (ANN) model was developed to predict concentration of carbenyl during the thermal aging of EPDM using a database consisting of seven input variables. The best fitting training data was obtained with the architecture of (7 inputs neurons, 10 hidden neurons and 1 output neuron). A Levenberg Marquardt learning (LM) algorithm, hyperbolic tangent transfer function were used at the hidden and output layer respectively. The optimal ANN was obtained with a high correlation coefficient R= 0.995 and a very low root mean square error RMSE = 0.0148 mol/l during the generalization phase. The comparison between the experimental and calculated results show that the ANN model is able of predicted the concentration of carbonyl during the thermal aging of ethylene propylene diene monomer


2021 ◽  
Vol 5 (2) ◽  
pp. 109-118
Author(s):  
Euis Saraswati ◽  
Yuyun Umaidah ◽  
Apriade Voutama

Coronavirus disease (Covid-19) or commonly called coronavirus. This virus spreads very quickly and even almost infects the whole world, including Indonesia. A large number of cases and the rapid spread of this virus make people worry and even fear the increasing spread of the Covid-19 virus. Information about this virus has also been spread on various social media, one of which is Twitter. Various public opinions regarding the Covid-19 virus are also widely expressed on Twitter. Opinions on a tweet contain positive or negative sentiments. Sentiments of sentiment contained in a tweet can be used as material for consideration and evaluation for the government in dealing with the Covid-19 virus. Based on these problems, a sentiment analysis classification is needed to find out public opinion on the Covid-19 virus. This research uses Artificial Neural Network (ANN) algorithm with the Backpropagation method. The results of this test get 88.62% accuracy, 91.5% precision, and 95.73% recall. The results obtained show that the ANN model is quite good for classifying text mining.


Author(s):  
Ana Maria Mihaela Gherman ◽  
Katalin Kovács ◽  
Mircea Vasile Cristea ◽  
Valer Tosa

In this work we present the results obtained with an artificial neural network (ANN) which we trained to predict the expected output of high-order harmonic generation (HHG) process, while exploring a multi-dimensional parameter space. We argue on the utility and efficiency of the ANN model and demonstrate its ability to predict the outcome of HHG simulations. In this case study we present the results for a loose focusing HHG beamline, where the changing parameters are: the laser pulse energy, gas pressure, gas cell position relative to focus and gas cell length. The physical quantity which we predict here using ANN is directly related to the total harmonic yield in a specified spectral domain (20-40 eV). We discuss the versatility and adaptability of the presented method.


2021 ◽  
Vol 17 (2) ◽  
pp. 144
Author(s):  
Fathiah Zakaria ◽  
Siti Aishah Che Kar ◽  
Rina Abdullah ◽  
Syila Izawana Ismail ◽  
Nur Idawati Md Enzai

Abstract: This paper presents a study of correlation between subjects of Diploma in Electrical Engineering (Electronics/Power) at Universiti Teknologi MARA(UiTM) Cawangan Terengganu using Artificial Neural Network (ANN). The analysis was done to see the effect of mathematical subjects (Pre-calculus and Calculus 1) and core subject (Electric Circuit 1) on Electronics 1. Electronics 1 is found to be a core subject with the history of high failure rate percentage (more than 25%) in previous semesters. This research has been conducted on current final semester students (Semester 5). Seven (7) models of ANN are developed to observe the correlation between the subjects. In order to develop an ANN model, ANN design and parameters need to be chosen to find the best model. In this study, historical data from students’ database were used for training and testing purpose. Total number of datasets used are 58 sets. 70% of the datasets are used for training process and 30% of the datasets are used for testing process. The Regression Coefficient, (R) values from the developed models was observed and analyzed to see the effect of the subject on the performance of students. It can be proven that Electric Circuit 1 has significant correlation with the Electronics 1 subject respected to the highest R value obtained (0.8100). The result obtained proves that student’s understanding on Electric Circuit 1 subject (taken during semester 2) has direct impact on the performance of students on Electronics 1 subject (taken during semester 3). Hence, early preventive measures could be taken by the respective parties.    Keywords: Artificial neural network, Diploma in Electrical Engineering, Graduate on time, Correlation.


Author(s):  
Geoffroy Chaussonnet ◽  
Sebastian Gepperth ◽  
Simon Holz ◽  
Rainer Koch ◽  
Hans-Jörg Bauer

Abstract A fully connected Artificial Neural Network (ANN) is used to predict the mean spray characteristics of prefilming airblast atomization. The model is trained from the planar prefilmer experiment from the PhD thesis of Gepperth (2020). The output of the ANN model are the Sauter Mean Diameter, the mean droplet axial velocity, the mean ligament length and the mean ligament deformation velocity. The training database contains 322 different operating points. Two types of model input quantities are investigated and compared. First, nine dimensional parameters are used as inputs for the model. Second, nine non-dimensional groups commonly used for liquid atomization are derived from the first set of inputs. The best architecture is determined after testing over 10000 randomly drawn ANN architectures, with up to 10 layers and up to 128 neurons per layer. The striking results is that for both types of model, the best architectures consist of only 3 hidden layer in the shape of a diabolo. This shape recalls the shape of an autoencoder, where the middle layer would be the feature space of reduced dimensionality. It was found that the model with dimensional input quantities always shows a lower test and validation errors than the one with non-dimensional input quantities. In general, the two types of models provide comparable accuracy, better than typical correlations of SMD and droplet velocity. Finally the extrapolation capability of the models was assessed by a training them on a confined domain of parameters and testing them outside this domain.


Sign in / Sign up

Export Citation Format

Share Document