ARTIFICIAL NEURAL NETWORK (ANN)-BASED PREDICTIVE TOOL FOR ESTIMATING LIGHTNING DAMAGE IN COMPOSITES

2021 ◽  
Author(s):  
DEVIN NIELSEN ◽  
TYLER LOTT ◽  
SOM DUTTA ◽  
JUHYEONG LEE

In this study, three artificial neural network (ANN) models are developed with back propagation (BP) optimization algorithms to predict various lightning damage modes in carbon/epoxy laminates. The proposed ANN models use three input variables associated with lightning waveform parameters (i.e., the peak current amplitude, rising time, and decaying time) to predict fiber damage, matrix damage, and through-thickness damage in the composites. The data used for training and testing the networks was actual lightning damage data collected from peer-reviewed published literature. Various BP training algorithms and network architecture configurations (i.e., data splitting, the number of neurons in a hidden layer, and the number of hidden layers) have been tested to improve the performance of the neural networks. Among the various BP algorithms considered, the Bayesian regularization back propagation (BRBP) showed the overall best performance in lightning damage prediction. When using the BRBP algorithm, as expected, the greater the fraction of the collected data that is allocated to the training dataset, the better the network is trained. In addition, the optimal ANN architecture was found to have a single hidden layer with 20 neurons. The ANN models proposed in this work may prove useful in preliminary assessments of lightning damage and reduce the number of expensive experimental lightning tests.

2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Gozde Pektas ◽  
Erdal Dinc ◽  
Dumitru Baleanu

Simultaneaous spectrophotometric determination of clorsulon (CLO) and invermectin (IVE) in commercial veterinary formulation was performed by using the artificial neural network (ANN) based on the back propagation algorithm. In order to find the optimal ANN model various topogical networks were tested by using different hidden layers. A logsig input layer, a hidden layer of neurons using the logsig transfer function and an output layer of two neurons with purelin transfer function was found suitable for basic configuration for ANN model. A calibration set consisting of CLO and IVE in calibration set was prepared in the concentration range of 1-23 �g/mL and 1-14 �g/mL, repectively. This calibration set contains 36 different synthetic mixtures. A prediction set was prepared in order to evaluate the recovery of the investigated approach ANN chemometric calibration was applied to the simultaneous analysis of CLO and IVE in compounds in a commercial veterinary formulation. The experimental results indicate that the proposed method is appropriate for the routine quality control of the above mentioned active compounds.


2015 ◽  
Vol 15 (4) ◽  
pp. 266-274 ◽  
Author(s):  
Adel Ghith ◽  
Thouraya Hamdi ◽  
Faten Fayala

Abstract An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.


Author(s):  
Aseel Shakir I. Hilaiwah ◽  
Hanan Abed Alwally Abed Allah ◽  
Basim Akhudir Abbas ◽  
Tole Sutikno

<span>An extensive review of the artificial neural network (ANN) is presented in this paper. Previous studies review the artificial neural network (ANN) based on the approaches (algorithms) used or based on the types of the artificial neural network (ANN). The presented paper reviews the ANN based on the goal of the ANN (methods, and layers), which become the main objective of this paper. As a famous artificial intelligent model, ANN mimics the human nervous system in handling the information transmited by different nodes (also known as neurons) in this model. These nodes are stacked in layers and work collectively to bring about solution to complex problems. Numerous structures exist for ANN and each of these structures is designed to addressa a specific task. Basically, the ANN architecture is comprised of 3 different layers wherein the first layer rpresents the input layer that consist of several input nodes that represent the input parameterfor the model. The hidden layer is te second layer and consists of a hidden layer of neurons. The neurons in this layer are directly connected to the neurons in the output layer. The third layer is the output layer which is the models’ response layer. The output layer neurons have the activation functions for the calculation of the ANN final output. The connection between the nodes in the ANN model is mediated by synaptic weights. This paper is a comprehensive study of ANN models and their layers.</span>


2018 ◽  
Vol 1 (1) ◽  
pp. 65
Author(s):  
Dženana Sarajlić ◽  
Layla Abdel-Ilah ◽  
Adnan Fojnica ◽  
Ahmed Osmanović

This paper presents development of Artificial Neural Network (ANN) for prediction of the size of nanoparticles (NP) and microspore surface area (MSA). Developed neural network architecture has the following three inputs: the concentration of the biodegradable polymer in the organic phase, surfactant concentration in the aqueous phase and the homogenizing pressure. Two-layer feedforward network with a sigmoid transfer function in the hidden layer and a linear transfer function in the output layer is trained, using Levenberg-Marquardt training algorithm. For training of this network, as well as for subsequent validation, 36 samples were used. From 36 samples which were used for subsequent validation in this ANN, 80,5% of them had highest accuracy while 19,5% of output data had insignificant differences comparing to experimental values.


2021 ◽  
Vol 12 (3) ◽  
pp. 35-43
Author(s):  
Pratibha Verma ◽  
Vineet Kumar Awasthi ◽  
Sanat Kumar Sahu

Coronary artery disease (CAD) has been the leading cause of death worldwide over the past 10 years. Researchers have been using several data mining techniques to help healthcare professionals diagnose heart disease. The neural network (NN) can provide an excellent solution to identify and classify different diseases. The artificial neural network (ANN) methods play an essential role in recognizes diseases in the CAD. The authors proposed multilayer perceptron neural network (MLPNN) among one hidden layer neuron (MLP) and four hidden layers neurons (P-MLP)-based highly accurate artificial neural network (ANN) method for the classification of the CAD dataset. Therefore, the ten-fold cross-validation (T-FCV) method, P-MLP algorithms, and base classifiers of MLP were employed. The P-MLP algorithm yielded very high accuracy (86.47% in CAD-56 and 98.35% in CAD-59 datasets) and F1-Score (90.36% in CAD-56 and 98.83% in CAD-59 datasets) rates, which have not been reported simultaneously in the MLP.


Author(s):  
Tamer Emara

The IEEE 802.16 system offers power-saving class type II as a power-saving algorithm for real-time services such as voice over internet protocol (VoIP) service. However, it doesn't take into account the silent periods of VoIP conversation. This chapter proposes a power conservation algorithm based on artificial neural network (ANN-VPSM) that can be applied to VoIP service over WiMAX systems. Artificial intelligent model using feed forward neural network with a single hidden layer has been developed to predict the mutual silent period that used to determine the sleep period for power saving class mode in IEEE 802.16. From the implication of the findings, ANN-VPSM reduces the power consumption during VoIP calls with respect to the quality of services (QoS). Experimental results depict the significant advantages of ANN-VPSM in terms of power saving and quality-of-service (QoS). It shows the power consumed in the mobile station can be reduced up to 3.7% with respect to VoIP quality.


Author(s):  
Rouviere De Waal ◽  
René Hugo ◽  
Maggi Soer ◽  
Johann J. Krüger

Normal and impaired pure tone thresholds (PTTs) were predicted from distortion product otoacoustic emissions (DP using a feed-forward artificial neural network (ANN) with a back-propagation training algorithm. The ANN used a present and absent DPOAEs from eight DP grams, (2fl -f2 = 406 - 4031 Hz) to predict PTTs at 0.5, 1, 2 and 4 kHz. With normal hearing as < 25 dB HL, prediction accuracy of normal hearing was 94% at 500, 88% at 1000, 88% at 2000 and 93% at 4000 Hz. Prediction of hearing-impaired categories was less accurate, due to insufficient data for the ANN to train on. This research indicates the possibility of accurately predicting hearing ability within 10 dB in normal hearing individuals and in hearing-impaired listeners with DPOAEs and ANNsfrom 500 - 4000 Hz.


2013 ◽  
Vol 69 (4) ◽  
pp. 768-774 ◽  
Author(s):  
André L. N. Mota ◽  
Osvaldo Chiavone-Filho ◽  
Syllos S. da Silva ◽  
Edson L. Foletto ◽  
José E. F. Moraes ◽  
...  

An artificial neural network (ANN) was implemented for modeling phenol mineralization in aqueous solution using the photo-Fenton process. The experiments were conducted in a photochemical multi-lamp reactor equipped with twelve fluorescent black light lamps (40 W each) irradiating UV light. A three-layer neural network was optimized in order to model the behavior of the process. The concentrations of ferrous ions and hydrogen peroxide, and the reaction time were introduced as inputs of the network and the efficiency of phenol mineralization was expressed in terms of dissolved organic carbon (DOC) as an output. Both concentrations of Fe2+ and H2O2 were shown to be significant parameters on the phenol mineralization process. The ANN model provided the best result through the application of six neurons in the hidden layer, resulting in a high determination coefficient. The ANN model was shown to be efficient in the simulation of phenol mineralization through the photo-Fenton process using a multi-lamp reactor.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 591
Author(s):  
M. Shyamala Devi ◽  
A.N. Sruthi ◽  
P. Balamurugan

At present, skin cancers are extremely the most severe and life-threatening kind of cancer. The majority of the pores and skin cancers are completely remediable at premature periods. Therefore, a premature recognition of pores and skin cancer can effectively protect the patients. Due to the progress of modern technology, premature recognition is very easy to identify. It is not extremely complicated to discover the affected pores and skin cancers with the exploitation of Artificial Neural Network (ANN). The treatment procedure exploits image processing strategies and Artificial Intelligence. It must be noted that, the dermoscopy photograph of pores and skin cancer is effectively determined and it is processed to several pre-processing for the purpose of noise eradication and enrichment in image quality. Subsequently, the photograph is distributed through image segmentation by means of thresholding. Few components distinctive for skin most cancers regions. These features are mined the practice of function extraction scheme - 2D Wavelet Transform scheme. These outcomes are provides to the Back-Propagation Neural (BPN) Network for effective classification. This completely categorizes the data set into either cancerous or non-cancerous. 


Sign in / Sign up

Export Citation Format

Share Document