Stress-strain state testing of metal structures at site facilities of pipeline transportation of oil and oil products: state and prospects

2019 ◽  
Vol 11 ◽  
pp. 144-148
Author(s):  
L.Yu. Mogilner ◽  
◽  
N.N. Skuridin ◽  
E.P. Studenov ◽  
◽  
...  
2021 ◽  
Vol 134 (3) ◽  
pp. 60-64
Author(s):  
R. R. Sultanbekov ◽  
◽  
A. M. Schipachev ◽  
I. S. Leonov ◽  
◽  
...  

The article studies the formation of the total sediment by the incompatibility of residual fuels and oil products, analyzes and calculates the stress-strain state of the tank taking into account oil products and sediment. The studies examined the influence of temperature fields on the sedimentation of a mixture of residual fuels caused by the incompatibility of these components. Temperatures of a stored product, namely residual fuel RMK-700, and ambient temperatures are taken into account when modelling in ANSYS product. Effects that oil product has separately and oil product with bottom sediments have on a stress-stain state are compared. Laboratory tests were performed to accurately measure density depending on various temperatures. By means of finite element method a stress-stain state of a vertical steel tank RVS-20000 is examined, the calculations showed that the maximum stresses are located in zones of the weld seam and in the places of installation of the receiving-distributing branch pipe and manhole. In these areas bottom sediment and temperature difference influence the stress-stain state greatly, with the stresses becoming even higher as the wall gets thinner.


2021 ◽  
Vol 9 (2) ◽  
pp. 56-60
Author(s):  
Mikhail Turko

The article discusses the methodology for calculating corrugated metal structures used as culverts based on the semi-analytical finite element method. The calculation is carried out according to a non-deformable scheme using the load dependences obtained on the basis of the structural mechanics of bulk solids. Significant differences in the nature of the stress-strain state of corrugated structures in comparison with smooth shells is revealed.


Author(s):  
P. Popovych ◽  
L. Poberezhny ◽  
O. Shevchuk ◽  
I. Murovanyi ◽  
T. Dovbush ◽  
...  

Purpose: Development of a computational model of stress-strain state bearing elements of trailer frames for preliminary assessment and identification of areas with increased risk of failure. Design/methodology/approach: The object of the study is the processes of loading the load-bearing metal structures of trailers - fertilizer spreaders. The stress-strain state of the spreader bearing system is investigated for the established three typical cases of external load. To refine the values obtained as a result of modelling, they were determined in SOLIDWORKS. Findings: Computational models of load have been compiled by improving the method of minimum potential deformation energy for its effective correct use in analytical studies of a similar type of metal structures. It is proved that for a flat closed frame structure made of thin-walled profiles, loaded with forces perpendicular to the plane of the frame, the levelling of compression and shear energies, as well as axial and transverse forces and bending moments in the horizontal plane does not significantly affect the calculation results. Research limitations/implications: Horizontal components of the shear forces as well as the normal forces and as a consequence the corresponding potential deformation energy are neglected, which has some effect on the accuracy of the calculations. Practical implications: An effective tool for strength analysis with preliminary assessment and diagnostics of load-bearing metal structures based on the constructed calculation models of stress strain state load-bearing frames of typical geometry with an arbitrarily given distribution of external load. Originality/value: A universal algorithm for recording additive functions of bending and torques, as well as the potential deformation energy of welded frames of trailers.


Author(s):  
Taras Hlova ◽  
Mykhailo Semerak ◽  
Bogdanna Hlova ◽  
Mykola Mykhailyshyn

Tanks for the storage of oil products and toxic substances in warehouses are the main ones. They can be in the form of separate tanks or a group of tanks. The most widespread are vertical steel tanks with a stationary roof that a placed in open areas. The tanks heat up, and the intensity of evaporation of the oil product increases in case of fire. If there is a permanent roof, the pressure in the tank will increase. If the capacity of the breathing valves is less than the intensity of evaporation then there is a risk of explosion. Explosions in the tank often lead to the separation of the bottom, and the side cylindrical surface and the roof fly away instantly, spilling oil on neighboring tanks and the territory of the tank’s park. Then the combustion area increases intensively. The destruction of the integrity of the tank, due to the separation of the bottom, contributes to temperature and power stresses, the value of which increases with increasing temperature of their heating and increasing pressure, respectively. The values of temperature stresses are added to the power stresses caused by pressure, and when the critical value is reached, destruction occurs. We investigated the stress-strain state of a steel vertical tank for the storage of oil products and toxic substances. The analysis of the reasons for the occurrence of admissible pressure in the tank, which is the reason for the loss of its integrity, is carried out. Using the differential equation of a closed cylindrical shell, which is under the action of internal pressure, analytical expressions are obtained to find deformations and stresses in the side cylindrical surface and bottom. Were calculated axial and annular stresses for the tank of RVS-900. Based on the basic relations of the theory of elasticity of thin plates and shells analytical expressions of the stress-strain state of the cylindrical tanks are obtained for conditions for changing of pressure on their structural elements. It is shown that the greatest values of axial stresses are obtained on the surface of the connection of the cylindrical surface with the bottom. The researches results are presented graphically.


2020 ◽  
Vol 164 ◽  
pp. 03005
Author(s):  
Yurii Sagirov ◽  
Viktor Artiukh ◽  
Vladlen Mazur ◽  
Maxim Aleksandrovskiy

Purpose of this paper is to improve parameters of metal structures elements of hoisting-and-transport machines (HTMs) by means of systematic approach to study changes of their stress-strain state during design or usage stage. Subject of the study is pattern of changes in distribution and values of stresses in elements of metal structures of HTMs depending on the structural and parametric characteristics. Design methodology of metal structures of HTMs on the basis of a portal crane is proposed, it is based on strength calculations using methods of allowable stresses and FEM, 3D computer simulation, system analysis of the stress-strain state and structural-parametric synthesis. Results of modeling of loading state and calculations of the portal crane metal structures on strength by FEM in CAD/CAE system, analysis of their stress-strain state, structural-parametric synthesis are presented. Recommendations on practical application of the results are given. Possible ways of further development of proposed solutions are identified.


Sign in / Sign up

Export Citation Format

Share Document