AN EXPERIENTIAL LEARNING APPROACH FOR DEVELOPING MENTAL MODELS IN ENGINEERING DESIGN EDUCATION

Author(s):  
S. Li ◽  
C. Chua

Mental simulation represents how a person interprets and understands the causal relations associated with the perceived information, and it is considered an important cognitive device to support engineering design activities. Mental models are considered information characterized in a person’s mind to understand the external world. They are important components to support effective mental simulation. This paper begins with a discussion on the experiential learning approach and how it supports learners in developing mental models for design activities. Following that, the paper looks at the four types of mental models: object, making, analysis and project, and illustrates how they capture different aspects and skills of design activities. Finally, the paper proposes an alternative framework, i.e., Spiral Learning Approach, which is an integration of Kolb’s experiential learningcycle and the Imaginative Education (IE) framework. While the Kolb’s cycle informs a pattern to leverage personal experiences to reusable knowledge, the IE’s framework suggests how prior experiences can trigger imagination and advance understandings. A hypothetical design of a snow removal device is used to illustrate the ideas of design-related mental models and the spirallearning approach.

Author(s):  
S. Li ◽  
G. Gress ◽  
P. Ziadé

In the teaching of engineering design, it may be common to use design methodology (DM), as documented in several textbooks, in the course delivery.  However, considerable drawbacks could be observed in our case when DM is taken as the major guidance for a capstone design course. We argue that DM tends to prescribe some context-free methods and procedures, which cannot be easily applied by students to their capstone design projects. At the same time, we observe that students need support to characterize a design problem, integrate technical knowledge in design activities and verify design ideas. These aspects require analytical and critical thinking, where DM may not be particularly helpful for students. In the five-year journey of deemphasizing DM in a capstone design course, we have explored and examined various pedagogical approaches such as online modules, design labs and peer evaluations.  Without the teaching of DM, the pedagogical strategy needs to be carefully planned to deliver specific learning in engineering design.  


2020 ◽  
Vol 10 (22) ◽  
pp. 7970
Author(s):  
Yu-Hung Chien ◽  
Chun-Kai Yao

As the inclusion of users in the design process receives greater attention, designers need to not only understand users, but also further cooperate with them. Therefore, engineering design education should also follow this trend, in order to enhance students’ ability to communicate and cooperate with users in the design practice. However, it is difficult to find users on teaching sites to cooperate with students because of time and budgetary constraints. With the development of artificial intelligence (AI) technology in recent years, chatbots may be the solution to finding specific users to participate in teaching. This study used Dialogflow and Google Assistant to build a system architecture, and applied methods of persona and semi-structured interviews to develop AI virtual product users. The system has a compound dialog mode (combining intent- and flow-based dialog modes), with which multiple chatbots can cooperate with students in the form of oral dialog. After four college students interacted with AI userbots, it was proven that this system can effectively participate in student design activities in the early stage of design. In the future, more AI userbots could be developed based on this system, according to different engineering design projects for engineering design teaching.


Author(s):  
S. Li ◽  
G. Gress

Macro-cognition is a field of study that investigates how domain experts (e.g., firefighters and weather forecasters) make decisions and judgements for their work.  This paper has adapted two models from macro-cognition to better understand design activities. The first one is the Data / Frame model, and it tells how a person’s frame can influence the selection of information in the design process.  The second one is the recognition-primed decision (RPD) model, which shows how a design idea emerges with a person’s recognition and mental simulation.  Based on these models, we further suggest three intervention strategies (i.e., challenge, relate and demonstrate) to support the processes of sensemaking, recognition and mental simulation.  We also suggest two evaluation aspects, i.e., relevance and fluency, to assess design activities.


Author(s):  
Lasse Skovgaard Jensen ◽  
Ali Gürcan Özkil ◽  
Krestine Mougaard

The recent years have witnessed a new generation of Makers working with new ways of knowledge generation for creation and sharing of digital and physical products. While this development has started within collaborative and grass roots organised networks; educational institutions have also embraced it by opening makerspaces and adopting elements of the Maker Movement in their offerings. This paper investigates how university driven makerspaces can affect engineering design and product development education trough a case study. We provide our findings based on interviews and data collected from educators, students the administrative and workshop staff of the makerspace. The findings are used to outline the challenges in incorporating the offerings of makerspaces. By discussing these challenges we identify opportunities for turning university makerspaces into innovation hubs and platforms that can support engineering design education.


AI Magazine ◽  
2010 ◽  
Vol 31 (1) ◽  
pp. 37 ◽  
Author(s):  
William C. Regli ◽  
Joseph B. Kopena ◽  
Michael Grauer ◽  
Timothy W. Simpson ◽  
Robert B. Stone ◽  
...  

This article introduces the challenge of digital preservation in the area of engineering design and manufacturing and presents a methodology to apply knowledge representation and semantic techniques to develop Digital Engineering Archives. This work is part of an ongoing, multiuniversity, effort to create cyber infrastructure-based engineering repositories for undergraduates (CIBER-U) to support engineering design education. The technical approach is to use knowledge representation techniques to create formal models of engineering data elements, workflows and processes. With these formal engineering knowledge and processes can be captured and preserved with some guarantee of long-term interpretability. The article presents examples of how the techniques can be used to encode specific engineering information packages and workflows. These techniques are being integrated into a semantic wiki that supports the CIBER-U engineering education activities across nine universities and involving over 3500 students since 2006.


Author(s):  
Jonathan Sauder ◽  
Yan Jin

Students are frequently trained in a variety of methodologies to promote their creativity in the collaborative environment. Some of the training and methods work well, while others present challenges. A collaborative stimulation approach is taken to extend creative cognition to collaborative creativity, providing new insights into design methodologies and training. An experiment using retrospective protocol analysis, originally conducted to identify the various types of collaborative stimulation, revealed how diversity of past creative experiences correlates with collaborative stimulation. This finding aligns with previous research. Unfortunately, many current engineering design education programs do not adequately provide opportunities for diverse creative experiences. As this study and other research has found, there is a need to create courses in engineering design programs which encourage participation in diverse creative activities.


Author(s):  
Warren F. Smith

The “Warman Design and Build Competition”, running across Australasian Universities, is now in its 26th year in 2013. Presented in this paper is a brief history of the competition, documenting the objectives, yearly scenarios, key contributors and champion Universities since its beginning in 1988. Assuming the competition has reached the majority of mechanical and related discipline engineering students in that time, it is fair to say that this competition, as a vehicle of the National Committee on Engineering Design, has served to shape Australasian engineering education in an enduring way. The philosophy of the Warman Design and Build Competition and some of the challenges of running it are described in this perspective by its coordinator since 2003. In particular, the need is for the competition to work effectively across a wide range of student group ability. Not every group engaging with the competition will be competitive nationally, yet all should learn positively from the experience. Reported also in this paper is the collective feedback from the campus organizers in respect to their use of the competition as an educational experience in their classrooms. Each University participating uses the competition differently with respect to student assessment and the support students receive. However, all academic campus organizer responses suggest that the competition supports their own and their institutional learning objectives very well. While the project scenarios have varied widely over the years, the intent to challenge 2nd year university (predominantly mechanical) engineering students with an open-ended statement of requirements in a practical and experiential exercise has been a constant. Students are faced with understanding their opportunity and their client’s value system as expressed in a scoring algorithm. They are required to conceive, construct and demonstrate their device with limited prior knowledge and experience, and the learning outcomes clearly impact their appreciation for teamwork, leadership and product realization.


Sign in / Sign up

Export Citation Format

Share Document