scholarly journals REFLECTING ON THE USE OF DESIGN METHODOLOGY IN ENGINEERING DESIGN EDUCATION

Author(s):  
S. Li ◽  
G. Gress ◽  
P. Ziadé

In the teaching of engineering design, it may be common to use design methodology (DM), as documented in several textbooks, in the course delivery.  However, considerable drawbacks could be observed in our case when DM is taken as the major guidance for a capstone design course. We argue that DM tends to prescribe some context-free methods and procedures, which cannot be easily applied by students to their capstone design projects. At the same time, we observe that students need support to characterize a design problem, integrate technical knowledge in design activities and verify design ideas. These aspects require analytical and critical thinking, where DM may not be particularly helpful for students. In the five-year journey of deemphasizing DM in a capstone design course, we have explored and examined various pedagogical approaches such as online modules, design labs and peer evaluations.  Without the teaching of DM, the pedagogical strategy needs to be carefully planned to deliver specific learning in engineering design.  

Author(s):  
S. Li ◽  
C. Chua

Mental simulation represents how a person interprets and understands the causal relations associated with the perceived information, and it is considered an important cognitive device to support engineering design activities. Mental models are considered information characterized in a person’s mind to understand the external world. They are important components to support effective mental simulation. This paper begins with a discussion on the experiential learning approach and how it supports learners in developing mental models for design activities. Following that, the paper looks at the four types of mental models: object, making, analysis and project, and illustrates how they capture different aspects and skills of design activities. Finally, the paper proposes an alternative framework, i.e., Spiral Learning Approach, which is an integration of Kolb’s experiential learningcycle and the Imaginative Education (IE) framework. While the Kolb’s cycle informs a pattern to leverage personal experiences to reusable knowledge, the IE’s framework suggests how prior experiences can trigger imagination and advance understandings. A hypothetical design of a snow removal device is used to illustrate the ideas of design-related mental models and the spirallearning approach.


Author(s):  
Robert W. Brennan

Classroom assessment is a challenge in engineering design given the open-ended nature of student projects, the reliance on multiple assessors, and difficulties around the judgement of “quality”. In this paper, we attempt to place the more general work on classroom assessment in the context of engineering design education. Examples are provided from the author’s experience teaching a mechanical and manufacturing engineering capstone design course and recommendations are made based on this experience.


2020 ◽  
Vol 10 (22) ◽  
pp. 7970
Author(s):  
Yu-Hung Chien ◽  
Chun-Kai Yao

As the inclusion of users in the design process receives greater attention, designers need to not only understand users, but also further cooperate with them. Therefore, engineering design education should also follow this trend, in order to enhance students’ ability to communicate and cooperate with users in the design practice. However, it is difficult to find users on teaching sites to cooperate with students because of time and budgetary constraints. With the development of artificial intelligence (AI) technology in recent years, chatbots may be the solution to finding specific users to participate in teaching. This study used Dialogflow and Google Assistant to build a system architecture, and applied methods of persona and semi-structured interviews to develop AI virtual product users. The system has a compound dialog mode (combining intent- and flow-based dialog modes), with which multiple chatbots can cooperate with students in the form of oral dialog. After four college students interacted with AI userbots, it was proven that this system can effectively participate in student design activities in the early stage of design. In the future, more AI userbots could be developed based on this system, according to different engineering design projects for engineering design teaching.


Author(s):  
Kevin Firth ◽  
Brian Surgenor

This paper presents experience with Tablet PCs from the perspective of students in a capstone design course. The authors coordinate an industry based capstone design course. As part of a pilot study, four teams in the course were provided with Tablet PCs with the requirement that they use their tablets as individual electronic design notebooks to replace their conventional hardcopy design notebooks. Experience to date indicates that this technology can enhance creativity in engineering design education.


Author(s):  
Carsten Rückert ◽  
Gritt Ahrens ◽  
Frauke Schroda ◽  
Oliver Gaedeke

Abstract At the Institute for Machine Design of the Technical University of Berlin, design methodology has been taught in industry-related engineering design projects for more than 20 years. In an interdisciplinary research study, different kinds of engineering design projects were evaluated. The aim was to identify factors which influence the acceptance and application of design methods, and thus optimize engineering design education and design methodology. The results suggest that the design work structure prescribed by design methodologies is a natural way to structure design work, at least for students. The separation of the basic machine elements education and the design methodology education seems to result in additional stress for the students.


Author(s):  
Yong Zeng ◽  
Shengji Yao ◽  
Michel Couturier ◽  
Frank Collins

Recently a new design methodology, Environment-Based Design (EBD) [1, 2] has been developed. In using the model of EBD, three elements are important: primitive synthesis knowledge, primitive environment and primitive solutions. Based on the three elements, three design strategies have been validated in [3] for generating new design solutions: formulating design problems differently, changing the sequence of decomposition of the design problem and extending synthesis knowledge. Increasing the possibilities of generating new design solutions may increase the chance of getting creative design solutions. Thus the three strategies for leading to new design solutions can be introduced into our engineering design education for helping and inspiring students generate creative design solutions. In this paper, we will first briefly introduce EBD model and the three design strategies leading to new design solutions, then explain how EBD can be integrated into the design education of engineering students and elaborate how the design strategies can be used to help students generate different design solutions.


Author(s):  
Jonathan Sauder ◽  
Yan Jin

Students are frequently trained in a variety of methodologies to promote their creativity in the collaborative environment. Some of the training and methods work well, while others present challenges. A collaborative stimulation approach is taken to extend creative cognition to collaborative creativity, providing new insights into design methodologies and training. An experiment using retrospective protocol analysis, originally conducted to identify the various types of collaborative stimulation, revealed how diversity of past creative experiences correlates with collaborative stimulation. This finding aligns with previous research. Unfortunately, many current engineering design education programs do not adequately provide opportunities for diverse creative experiences. As this study and other research has found, there is a need to create courses in engineering design programs which encourage participation in diverse creative activities.


Author(s):  
Warren F. Smith

The “Warman Design and Build Competition”, running across Australasian Universities, is now in its 26th year in 2013. Presented in this paper is a brief history of the competition, documenting the objectives, yearly scenarios, key contributors and champion Universities since its beginning in 1988. Assuming the competition has reached the majority of mechanical and related discipline engineering students in that time, it is fair to say that this competition, as a vehicle of the National Committee on Engineering Design, has served to shape Australasian engineering education in an enduring way. The philosophy of the Warman Design and Build Competition and some of the challenges of running it are described in this perspective by its coordinator since 2003. In particular, the need is for the competition to work effectively across a wide range of student group ability. Not every group engaging with the competition will be competitive nationally, yet all should learn positively from the experience. Reported also in this paper is the collective feedback from the campus organizers in respect to their use of the competition as an educational experience in their classrooms. Each University participating uses the competition differently with respect to student assessment and the support students receive. However, all academic campus organizer responses suggest that the competition supports their own and their institutional learning objectives very well. While the project scenarios have varied widely over the years, the intent to challenge 2nd year university (predominantly mechanical) engineering students with an open-ended statement of requirements in a practical and experiential exercise has been a constant. Students are faced with understanding their opportunity and their client’s value system as expressed in a scoring algorithm. They are required to conceive, construct and demonstrate their device with limited prior knowledge and experience, and the learning outcomes clearly impact their appreciation for teamwork, leadership and product realization.


Sign in / Sign up

Export Citation Format

Share Document