scholarly journals Efficacy and Safety of Innovative Experimental Chimeric Antigen Receptor (CAR) T-cells versus Axicabtagene ciloleucel (Yescarta) for the Treatment of Relapsed/Refractory Large B-Cell Lymphoma (LBCL): Matching Adjusted Indirect Comparisons (MAICs) and Systematic Review

2021 ◽  
Vol 12 (4) ◽  
pp. 18
Author(s):  
Bayarmagnai Weinstein ◽  
Bogdan Muresan ◽  
Sara Solano ◽  
Antonio Vaz de Macedo ◽  
YoonJung Lee ◽  
...  

Despite favorable results of CAR T-cell therapy for relapsed/refractory large B-cell lymphoma (R/R LBCL), several challenges remain, including incomplete response, immune-mediated toxicity, and antigen-loss relapse. We delineated the relative clinical benefit of the novel approaches compared to the currently approved CAR T-cell therapies. In the absence of head-to-head comparisons and randomized controlled trials, we performed Matching Adjusted Indirect Comparisons to quantify the relative efficacy and safety of experimental CARs against Axicabtagene ciloleucel (Yescarta), the first FDA-approved CAR. A total of 182 R/R LBCL patients from 15 clinical trials with individual patient data (IPD) were pooled into eight populations by their CAR T-cell constructs and +/- ASCT status. The study endpoints were Progression-Free Survival (PFS), grade ≥ 3 cytokine release syndrome (CRS), and grade ≥ 3 neurotoxicity (NT). Tandem CD19.CD20.4-1BBζ CARs indicated favorable efficacy and safety, whereas the co-infusion of CD19 & CD20 with 4-1BBζ showed no clinical benefit compared to Yescarta. Third generation CD19. CD28. 4-1BBζ, and sequential administration of autologous stem cell transplantation (ASCT) and CD19. CARs presented statistically insignificant yet improved PFS and safety except for ASCT combined intervention which had suggestively higher NT risk than Yescarta. CARs with modified co-stimulatory domains to reduce toxicity (Hu19. CD8.28Zζ and CD19. BBz.86ζ) presented remarkable safety with no severe adverse events; however, both presented worse PFS than Yescarta. Third-generation CARs demonstrated statistically significantly lower NT than Yescarta. CD20. 4-1BBζ data suggested targeting CD20 antigen alone lacks clinical or safety benefit compared to Yescarta. Further comparisons with other FDA-approved CARs are needed.

2021 ◽  
Author(s):  
Bayarmagnai Weinstein ◽  
Bogdan Muresan ◽  
Sara Solano ◽  
Antonio Vaz de Macedo ◽  
YoonJung Lee ◽  
...  

Despite favorable results of CAR T-cell therapy for relapsed/refractory large B-cell lymphoma (R/R LBCL), several challenges remain, including incomplete response, immune-mediated toxicity, and antigen-loss relapse. We delineated the relative clinical benefit of the novel approaches compared to the currently approved CAR T-cell therapies. In the absence of head-to-head comparisons and randomized controlled trials, we performed Matching Adjusted Indirect Comparisons to quantify the relative efficacy and safety of experimental CARs against Axicabtagene ciloleucel (Yescarta), the first FDA-approved CAR. A total of 182 R/R LBCL patients from 15 clinical trials with individual patient data (IPD) were pooled into eight populations by their CAR T-cell constructs and +/- ASCT status. The study endpoints were Progression-Free Survival (PFS), grade ≥ 3 cytokine release syndrome (CRS), and grade ≥ 3 neurotoxicity (NT). Tandem CD19.CD20.4-1BBζ CARs indicated favorable efficacy and safety, whereas the co-infusion of CD19 & CD20 with 4-1BBζ showed no clinical benefit compared to Yescarta. Third generation CD19. CD28. 4-1BBζ, and sequential administration of autologous stem cell transplantation (ASCT) and CD19. CARs presented statistically insignificant yet improved PFS and safety except for ASCT combined intervention which had suggestively higher NT risk than Yescarta. CARs with modified co-stimulatory domains to reduce toxicity (Hu19. CD8.28Zζ and CD19. BBz.86ζ) presented remarkable safety with no severe adverse events; however, both presented worse PFS than Yescarta. Third-generation CARs demonstrated statistically significantly lower NT than Yescarta. CD20. 4-1BBζ data suggested targeting CD20 antigen alone lacks clinical or safety benefit compared to Yescarta. Further comparisons with other FDA-approved CARs are needed.


2019 ◽  
Vol 37 ◽  
pp. 301-301 ◽  
Author(s):  
C. Thieblemont ◽  
S. Le Gouill ◽  
R. Di Blasi ◽  
G. Cartron ◽  
F. Morschhauser ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5821-5821
Author(s):  
David G. Maloney ◽  
Fei Fei Liu ◽  
Lisette Nientker ◽  
Cathelijne Alleman ◽  
Brian Hutton ◽  
...  

Introduction: Large B-cell lymphoma (LBCL) is the most common subtype of non-Hodgkin lymphoma. Frontline treatment is curative in ~60% of patients (pts); however, ~30% of pts relapse and ~10% are refractory to frontline treatment. Treatment options for pts with relapsed/refractory (R/R) disease, especially in the third-line or greater (3L+) setting, have been primarily salvage chemotherapies (CTs). Recently, 2 CAR T cell products, axicabtagene ciloleucel (Yescarta®) and tisagenlecleucel (Kymriah®), and the antibody-drug conjugate, polatuzumab vedotin (Polivy®), were approved in the 3L setting. A systematic literature review (SLR) of R/R LBCL was conducted to identify relevant evidence on clinical outcomes in LBCL pts, including these new therapies, within the second-line and greater (2L+) or 3L+ setting, and to define the unmet medical need. Methods: This SLR was conducted in accordance with the Cochrane Handbook for Systematic Reviews of Interventions and European Union Health Technology Assessment requirements. The review identified randomized and nonrandomized/observational studies within R/R LBCL, including diffuse large B-cell lymphoma (DLBCL), follicular lymphoma grade 3B (FL3B), primary mediastinal large B-cell lymphoma (PMBCL), DLBCL transformed from indolent lymphomas, and R/R DLBCL with secondary central nervous system (SCNS) involvement. Sources were EMBASE, MEDLINE, The Cochrane Library, and clinical conferences (ASCO, ESMO, EHA, ASH, ICML, AACR, and EORTC) from Jan 2000 to Apr 2019. Results : Following screening of 8683 database records and additional sources, 103 publications covering 78 unique studies were identified. Studies identified were characterized by line of treatment and R/R LBCL subtype (Figure). OS, PFS, DOR, OR, and safety observed from the identified studies were described. Disease subtypes, pt eligibility criteria, and length of follow-up varied notably across studies. In the 3L+ population, 11 salvage CT and 2 CAR T cell therapy studies reported survival outcomes. With salvage CT, the reported ORR across studies ranged from 0% to 54%, while CR ranged from 5.6%-31%. Median OS (mOS) ranged between 3-9 months, with one outlying study reporting mOS at 20 months. Median PFS (mPFS) reported within the salvage CT studies ranged from 2-6 months. Among CAR T cell therapies, pts treated with axicabtagene ciloleucel (n=101) reported a CR rate of 58% and median DOR (mDOR) was 11.1 months after a median follow-up of 27.1 months. mPFS was 5.9 months and mOS was not reached. At a median follow-up of 19.3 months, pts treated with tisagenlecleucel (n=115) had a CR of 40% but the mDOR was not reached. mOS was 11.1 months for all infused patients. In the 2L+ transplant-eligible population (36 studies), pts who received high-dose CT + HSCT achieved mOS between 9 months to 5 years. In the transplant noneligible population, 16 studies reported mOS between 3-20 months. Studies involving mixed transplant-eligible and noneligible populations (30 studies) reported mOS of 1-17 months. A few studies with limited sample sizes were found to report outcomes in LBCL subtypes (eg, PMBCL, SCNS lymphoma, DLBCL transformed from non-FL indolent lymphoma, FL3B). In the 3L+ setting, 1 study reported that mOS was not reached after a median of 6.6 months. In the 2L+ setting, 4 studies reported mPFS and mOS outcomes ranging between 2-9 months and 10-16 months, respectively. Among studies assessing safety of salvage CTs in R/R LBCL, neutropenia, leukocytopenia, thrombocytopenia, and infections were the most commonly reported adverse events (AEs), with neutropenia being the most reported. Among the 3 studies reporting safety outcomes of CAR T cell therapy, data suggest that hematologic AEs (possibly related to lymphodepleting CT), cytokine release syndrome, and neurotoxicity are the most reported. Conclusions : Despite the availability of new therapies for 2L+ and 3L + LBCL, examination of the current evidence has shown that there exists a high unmet need for additional therapeutic options that provide favorable benefit/risk and durable response for these patients. Furthermore, limited data are available for the rarer subtypes of LBCL. Both findings represent important treatment gaps for R/R LBCL that must be addressed in future research geared toward improvement of the current treatment landscape. Disclosures Maloney: Juno Therapeutics: Honoraria, Patents & Royalties: patients pending , Research Funding; Celgene,Kite Pharma: Honoraria, Research Funding; BioLine RX, Gilead,Genentech,Novartis: Honoraria; A2 Biotherapeutics: Honoraria, Other: Stock options . Liu:Celgene Corporation: Employment. Nientker:Celgene Corporation: Consultancy; Pharmerit Cöoperatief U.A.: Employment. Alleman:Pharmerit Cöoperatief U.A.: Employment; Celgene Corporation: Consultancy. Garcia:Celgene: Employment, Equity Ownership.


Blood ◽  
2020 ◽  
Author(s):  
John H Baird ◽  
Matthew Joshua Frank ◽  
Juliana Craig ◽  
Shabnum Patel ◽  
Jay Y Spiegel ◽  
...  

The prognosis for patients with large B-cell lymphoma (LBCL) progressing after treatment with chimeric antigen receptor (CAR) T-cell therapy targeting CD19 (CAR19) is poor. We report on the first three consecutive patients with autologous CAR19-refractory LBCL treated with a single infusion of autologous 1×106 CAR+ T-cells/kg targeting CD22 (CAR22) as part of a phase I dose escalation study. CAR22 therapy was relatively well tolerated, without any observed non-hematologic adverse events higher than grade 2. Following infusion, all three patients achieved complete remission, with all responses ongoing at the time of last follow up (mean 7.8 months, range 6-9.3). Circulating CAR22 cells demonstrated robust expansion (peak range 85.4-350 cells/µL), and persisted beyond three months in all patients with continued radiographic responses and corresponding decreases in circulating tumor DNA (ctDNA) beyond six months post-infusion. Further accrual at a higher dose level in this phase 1 dose-escalation study is ongoing and will explore the role of this therapy in patients who have failed prior CAR T-cell therapies. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT04088890)


2021 ◽  
Vol 5 (19) ◽  
pp. 3789-3793
Author(s):  
Susanne Jung ◽  
Jochen Greiner ◽  
Stephanie von Harsdorf ◽  
Pavle Popovic ◽  
Roland Moll ◽  
...  

Abstract Treatment with CD19-directed (CAR) T cells has evolved as a standard of care for multiply relapsed or refractory large B-cell lymphoma (r/r LBCL). A common side effect of this treatment is the immune effector cell–associated neurotoxicity syndrome (ICANS). Severe ICANS can occur in up to 30% to 40% of patients treated with axicabtagene-ciloleucel (axi-cel), usually within the first 4 weeks after administration of the dose and usually responding well to steroids. We describe a case of progressive central neurotoxicity occurring 9 months after axi-cel infusion in a patient with r/r LBCL who had undergone a prior allogeneic hematopoietic cell transplant. Despite extensive systemic and intrathecal immunosuppression, neurological deterioration was inexorable and eventually fatal within 5 months. High CAR T-cell DNA copy numbers and elevated levels of interleukin-1 (IL-1) and IL-6 were found in the cerebral spinal fluid as clinical symptoms emerged, and CAR T-cell brain infiltration was observed on autopsy, suggesting that CAR T cells played a major pathogenetic role. This case of unexpected, devastating, late neurotoxicity warrants intensified investigation of neurological off-target effects of CD19-directed CAR T cells and highlights the need for continuous monitoring for late toxicities in this vulnerable patient population.


2020 ◽  
pp. 106002802094423
Author(s):  
Zachery Halford ◽  
Mary Kate Anderson ◽  
Lunawati L. Bennett

Objective: To evaluate the literature for axicabtagene ciloleucel (axi-cel), a first-in-class chimeric antigen receptor (CAR) T-cell therapy, in the treatment of relapsed/refractory (r/r) large B-cell lymphoma (LBCL). Data Sources: We conducted a PubMed (inception to June 22, 2020) and ClinicalTrials.gov search using the following terms: CD19, chimeric antigen receptor, and lymphoma. Study Selection and Data Extraction: All retrospective and prospective studies evaluating the use of axi-cel in LBCL were reviewed. Data Synthesis: In the pivotal ZUMA-1 trial, axi-cel exhibited unprecedented overall and complete response rates of 83% and 58%, respectively. With a median follow-up of 27.1 months, 39% of patients had ongoing responses. Furthermore, postmarketing retrospective analyses found similar response rates in a more clinically diverse LBCL patient population. Novel CAR T-cell therapy elicits unique and potentially life-threatening toxicities that include cytokine release syndrome (CRS) and immune effector cell–associated neurotoxicity syndrome (ICANS). Studies reported grade ≥3 CRS in 7% to 14% of patients and grade ≥3 ICANS in 31% to 55% of patients. Relevance to Patient Care and Clinical Practice: Axi-cel was the first US Food and Drug Administration–approved genetically engineered autologous CAR T-cell agent in r/r LBCL, representing an important milestone and paradigm shift in cancer treatment. Adoptive T-cell immunotherapy is a breakthrough treatment modality requiring careful patient selection, multidisciplinary collaboration, comprehensive patient counseling, and expert training to ensure optimal treatment. Conclusions: The initial and ongoing results with axi-cel are encouraging, but long-term safety and efficacy data are lacking. Additional studies are required to identify axi-cel’s ideal place in LBCL therapy.


2021 ◽  
Vol 39 (S2) ◽  
Author(s):  
K. Rejeski ◽  
A. Perez ◽  
P. Sesques ◽  
C. Berger ◽  
L. Jentzsch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document