scholarly journals Joint Independent Forward and Inverse Kinematics for Hyper Redundant Series Robot Arm

2019 ◽  
Vol 85 (6) ◽  
pp. 585-590
Author(s):  
Hiroshi FUKUMARU ◽  
Akihiro HAYASHI ◽  
Toshifumi SATAKE ◽  
Shinya HARAMAKI ◽  
Keitaro NARUSE ◽  
...  
2015 ◽  
Vol 76 (4) ◽  
Author(s):  
Mohammad Afif Ayob ◽  
Wan Nurshazwani Wan Zakaria ◽  
Jamaludin Jalani ◽  
Mohd Razali Md Tomari

This paper presents the reliability and accuracy of the developed model of 5-axis Mitsubishi RV-2AJ robot arm. The CAD model of the robot was developed by using SolidWorks while the multi-body simulation environment was demonstrated by using SimMechanics toolbox in MATLAB. The forward and inverse kinematics simulation results proposed that the established model resembles the real robot with accuracy of 98.99%. 


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Bui Thi Hai Linh ◽  
Ying-Shieh Kung

When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware description language (VHDL) is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally, finite state machine (FSM) is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink. The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be completed within one microsecond.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 51 ◽  
Author(s):  
Yeshmukhametov ◽  
Koganezawa ◽  
Yamamoto

Wire-driven continuum manipulators are gaining more attention due to their flexibility and dexterity features. In comparison with traditional manipulators, the continuum structure is compliant and safe for human tissue and is able to easily adapt to the unstructured environment. Despite its advantages, wire-driven mechanisms have a serious problem with tension. While pushing and pulling, the wire loses tension, which leads to an ineffective way of driving the pulleys. Therefore, in this research, we propose a novel discrete continuum robot arm with a passive pre-tension mechanism that avoids the wire tension problem. Moreover, this paper will describe the backbone design of the discrete continuum arm and pre-tension mechanism structure, as well as forward and inverse kinematics and kinetic solutions, with simulation results.


2020 ◽  
Vol 53 (5-6) ◽  
pp. 876-883
Author(s):  
Lu Zhou

This paper designs and implements a simulation system that can verify the planning algorithms such as table tennis trajectory planning and robot leg movement planning. The simulation system and the humanoid robot’s control system are connected based on the RTnet real-time Ethernet protocol. The table tennis game of the humanoid robot is implemented using the simulation of the forward and inverse kinematics of the robot arm, the hitting planning, and the forward and inverse kinematics of the robot leg.


Author(s):  
Saeed Behzadipour

A new hybrid cable-driven manipulator is introduced. The manipulator is composed of a Cartesian mechanism to provide three translational degrees of freedom and a cable system to drive the mechanism. The end-effector is driven by three rotational motors through the cables. The cable drive system in this mechanism is self-stressed meaning that the pre-tension of the cables which keep them taut is provided internally. In other words, no redundant actuator or external force is required to maintain the tensile force in the cables. This simplifies the operation of the mechanism by reducing the number of actuators and also avoids their continuous static loading. It also eliminates the redundant work of the actuators which is usually present in cable-driven mechanisms. Forward and inverse kinematics problems are solved and shown to have explicit solutions. Static and stiffness analysis are also performed. The effects of the cable’s compliance on the stiffness of the mechanism is modeled and presented by a characteristic cable length. The characteristic cable length is calculated and analyzed in representative locations of the workspace.


Author(s):  
Sunil Kumar Agrawal ◽  
Siyan Li ◽  
Glen Desmier

Abstract The human spine is a sophisticated mechanism consisting of 24 vertebrae which are arranged in a series-chain between the pelvis and the skull. By careful articulation of these vertebrae, a human being achieves fine motion of the skull. The spine can be modeled as a series-chain with 24 rigid links, the vertebrae, where each vertebra has three degrees-of-freedom relative to an adjacent vertebra. From the studies in the literature, the vertebral geometry and the range of motion between adjacent vertebrae are well-known. The objectives of this paper are to present a kinematic model of the spine using the available data in the literature and an algorithm to compute the inter vertebral joint angles given the position and orientation of the skull. This algorithm is based on the observation that the backbone can be described analytically by a space curve which is used to find the joint solutions..


Sign in / Sign up

Export Citation Format

Share Document