scholarly journals Design and implementation of a three-dimensional simulation system for a humanoid table tennis robot

2020 ◽  
Vol 53 (5-6) ◽  
pp. 876-883
Author(s):  
Lu Zhou

This paper designs and implements a simulation system that can verify the planning algorithms such as table tennis trajectory planning and robot leg movement planning. The simulation system and the humanoid robot’s control system are connected based on the RTnet real-time Ethernet protocol. The table tennis game of the humanoid robot is implemented using the simulation of the forward and inverse kinematics of the robot arm, the hitting planning, and the forward and inverse kinematics of the robot leg.

2015 ◽  
Vol 76 (4) ◽  
Author(s):  
Mohammad Afif Ayob ◽  
Wan Nurshazwani Wan Zakaria ◽  
Jamaludin Jalani ◽  
Mohd Razali Md Tomari

This paper presents the reliability and accuracy of the developed model of 5-axis Mitsubishi RV-2AJ robot arm. The CAD model of the robot was developed by using SolidWorks while the multi-body simulation environment was demonstrated by using SimMechanics toolbox in MATLAB. The forward and inverse kinematics simulation results proposed that the established model resembles the real robot with accuracy of 98.99%. 


Robotica ◽  
2006 ◽  
Vol 25 (1) ◽  
pp. 43-61 ◽  
Author(s):  
Eduardo Bayro-Corrochano ◽  
Julio Zamora-Esquivel

In this paper, the authors use the conformal geometric algebra in robotics. This paper computes the inverse kinematics of a robot arm and the differential kinematics of a pan–tilt unit using a language of spheres showing how we can simplify the complexity of the computations.This work introduces a new geometric Jacobian in terms of bivectors, which is by far more effective in its representation as the standard Jacobian because its derivation is done in terms of the projections of the involved points onto the line axes. Furthermore, unlike the standard formulation, our Jacobian can be used for any kind of robot joints.In this framework, we deal with various tasks of three-dimensional (3D) object manipulation, which is assisted by stereo-vision. All these computations are carried out using real images captured by a robot binocular head, and the manipulation is done by a five degree of freedom (DOF) robot arm mounted on a mobile robot. In addition to this, we show a very interesting application of the geometric Jacobian for differential control of the binocular head. We strongly believe that the framework of conformal geometric algebra can generally be of great advantage for visually guided robotics.


2012 ◽  
Vol 155-156 ◽  
pp. 157-161
Author(s):  
Li Na Yang

The development and research of three-dimensional (3D) simulation system of the garments CAD (Computer Aided Design) will change the traditional graphic design concepts and design methods, which will develop from two-dimensional (2D) to 3D. It means to build a comprehensive calculating methodology for forming real garments simulation system on the computer. Combining with the advanced CAD technology and technical works of Chinese garments industry will greatly improve the level of the sustainable development and intelligentialization of the software, and will accelerate the technical upgrade of modern garments industry and push the rapid development of national economy.


2013 ◽  
Vol 5 (2) ◽  
pp. 96-100
Author(s):  
Raimondas Zubavičius ◽  
Nerijus Paulauskas ◽  
Martynas Šapurov

The analysis focuses on control features of the hexapod walking robot with three degree-of-freedom legs. This paper describes different servo control methods and presents the developed algorithm for formation of servos control signals. The geometric inverse kinematics method was used to calculate the angles of each joint of a leg. The authors present the results of the experimental investigation on the hexapod robot leg movement trajectory. Article in Lithuanian. Santrauka Nagrinėjami šešiakojo žingsniuojančio roboto kojų, turinčių tris judrumo laipsnius, valdymo ypatumai. Aprašomi skirtingi valdomųjų mechanizmų valdymo būdai, pateikiamas sudarytas programos algoritmas valdomųjų mechanizmų valdymo signalams formuoti. Aprašyta, kaip randami atskirų roboto kojos dalių tarpusavio kampai taikant geometrinį atvirkštinės kinematikos metodą. Pateikiami šešiakojo žingsniuojančio roboto maketo tyrimo vienos kojos judėjimo erdvėje rezultatai.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Bui Thi Hai Linh ◽  
Ying-Shieh Kung

When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware description language (VHDL) is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally, finite state machine (FSM) is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink. The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be completed within one microsecond.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Oded Medina ◽  
Amir Shapiro ◽  
Nir Shvalb

Recent years show an increasing interest in flexible robots due to their adaptability merits. This paper introduces a novel set of hyper-redundant flexible robots which we call actuated flexible manifold (AFM). The AFM is a two-dimensional hyper-redundant grid surface embedded in ℝ2 or ℝ3. Theoretically, such a mechanism can be manipulated into any continuous smooth function. We introduce the mathematical framework for the kinematics of an AFM. We prove that for a nonsingular configuration, the number of degrees of freedom (DOF) of an AFM is simply the number of its grid segments. We also show that for a planar rectangular grid, every nonsingular configuration that is also energetically stable is isolated. We show how to calculate the forward and inverse kinematics for such a mechanism. Our analysis is also applicable for three-dimensional hyper-redundant structures as well. Finally, we demonstrate our solution on some actuated flexible grid-shaped surfaces.


Sign in / Sign up

Export Citation Format

Share Document