scholarly journals Anomaly Detection for Wide-Field Images Using Gaze Prediction Module

2021 ◽  
Vol 87 (12) ◽  
pp. 1008-1012
Author(s):  
Keisuke GOTO ◽  
Hiroaki AIZAWA ◽  
Kunihito KATO ◽  
Yoshihiro HARADA ◽  
Minori NOGUCHI ◽  
...  
2020 ◽  
Vol 498 (3) ◽  
pp. 3077-3094
Author(s):  
Sara Webb ◽  
Michelle Lochner ◽  
Daniel Muthukrishna ◽  
Jeff Cooke ◽  
Chris Flynn ◽  
...  

ABSTRACT Identification of anomalous light curves within time-domain surveys is often challenging. In addition, with the growing number of wide-field surveys and the volume of data produced exceeding astronomers’ ability for manual evaluation, outlier and anomaly detection is becoming vital for transient science. We present an unsupervised method for transient discovery using a clustering technique and the astronomaly package. As proof of concept, we evaluate 85 553 min-cadenced light curves collected over two ∼1.5 h periods as part of the Deeper, Wider, Faster program, using two different telescope dithering strategies. By combining the clustering technique HDBSCAN with the isolation forest anomaly detection algorithm via the visual interface of astronomaly, we are able to rapidly isolate anomalous sources for further analysis. We successfully recover the known variable sources, across a range of catalogues from within the fields, and find a further seven uncatalogued variables and two stellar flare events, including a rarely observed ultrafast flare (∼5 min) from a likely M-dwarf.


Author(s):  
M. G. Lagally

It has been recognized since the earliest days of crystal growth that kinetic processes of all Kinds control the nature of the growth. As the technology of crystal growth has become ever more refined, with the advent of such atomistic processes as molecular beam epitaxy, chemical vapor deposition, sputter deposition, and plasma enhanced techniques for the creation of “crystals” as little as one or a few atomic layers thick, multilayer structures, and novel materials combinations, the need to understand the mechanisms controlling the growth process is becoming more critical. Unfortunately, available techniques have not lent themselves well to obtaining a truly microscopic picture of such processes. Because of its atomic resolution on the one hand, and the achievable wide field of view on the other (of the order of micrometers) scanning tunneling microscopy (STM) gives us this opportunity. In this talk, we briefly review the types of growth kinetics measurements that can be made using STM. The use of STM for studies of kinetics is one of the more recent applications of what is itself still a very young field.


2018 ◽  
Vol 18 (1) ◽  
pp. 20-32 ◽  
Author(s):  
Jong-Min Kim ◽  
Jaiwook Baik

2013 ◽  
Vol 183 (8) ◽  
pp. 888-894
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
V.L. Plokhotnichenko ◽  
S.F. Bondar ◽  
A.V. Perkov ◽  
...  

2010 ◽  
Vol 180 (4) ◽  
pp. 424 ◽  
Author(s):  
G.M. Beskin ◽  
S.V. Karpov ◽  
S.F. Bondar ◽  
V.L. Plokhotnichenko ◽  
A. Guarnieri ◽  
...  

2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai

2015 ◽  
Vol 135 (12) ◽  
pp. 749-755
Author(s):  
Taiyo Matsumura ◽  
Ippei Kamihira ◽  
Katsuma Ito ◽  
Takashi Ono

Sign in / Sign up

Export Citation Format

Share Document