scholarly journals Geochronological and geochemical features of magmatic gold- and silverbearing complexes in the Chukotka sector of the Russian Arctic coast

LITOSFERA ◽  
2020 ◽  
Vol 19 (6) ◽  
pp. 861-888 ◽  
Author(s):  
V. G. Sakhno ◽  
L. S. Tsurikova ◽  
S. O. Maksimov

Research subject. This study was devoted to magmatic complexes in Northwestern Chukotka associated with the largest gold and silver deposits across Kupol’skii (Kupol field) and Ilirnei (Dvoinoe and September fields) ore junctions. Materials and methods. The petrogenic elements of ore-containing igneous rocks were determined using a spectrometer ICAP 6500Duo (USA). An elemental analysis of igneous and ore samples was performed by inductively coupled plasma spectrometry (ICP-MS). The age was determined by zircons (SHRIMP-II, VSEGEI isotope research center, St. Petersburg) using a laser ablation system NWR-213 (USA). Results. New information concerning the dating of magmatic complexes and gold-bearing magmatic systems in the ore junctions under study was obtained. It was established that the manifestations of magmatism in the Kupol and Ilirnei ore junctions differ in terms of the main phase formation age. The age of the Ilirnei ore junction, which is represented by large-volume intrusions of granitoids, leucogranites and volcanites of medium-basic composition, was determined to be 124–114 Ma. The age of mineralization, which is associated with later magmatism phases – small intrusions and a dike complex of predominantly granodiorite composition –, was estimated to be (93– 92) ± 2.0 Ma. In the Kupol ore junction, the magmatism associated with mineralization was dated 91.0 ± 1.4 Ma, while the age of rhyolite dikes containing mineralization was estimated to be 88.9–89.0 Ma.Conclusion. The results of the RMS analysis of the Kupol and Ilirney ore junctions suggest that ore formation in this region was connected with a single stage of activation of deep processes and mantle-crust interaction with participation of deep (mantle) fluids. 

2019 ◽  
Vol 51 (2) ◽  
pp. 256-260
Author(s):  
N. P. Gribacheva ◽  
G. M. Gecheva ◽  
V. M. Stefanova

For the first time a complex study of the bioaccumulation of 22 macro- and microelements, as well as of 18 rare earth and radioactive elements in mosses was applied in the territory of Western Rhodopes. The research is a part of the international program (ICP Vegetation, UNECE) that has been carried out in most of the European countries since 1987. Certain local emitters like old and open mines, serpentines, as well as cross-border transmission were identified. In addition, highest concentrations of radioactive elements were registered in the area of an old uranium mine and most elevated sites, probably due to increased wet deposition. Both heavy metals and toxic elements, as well as radioactive elements maxima were lower than measured highest levels for Bulgaria and Europe. In such studies, inductively coupled plasma spectrometry (ICP-OES, ICP-MS) could be recommended.


Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1071
Author(s):  
Sumit Mishra ◽  
Alexander Slabunov ◽  
Sergei Svetov ◽  
Anna Kervinen ◽  
Natalia Nesterova

In the present work, we studied zircons from the less foliated granites of the Chail Group, which form a thrust sheet of the Lesser Himalayan Sequences, Garhwal region. Compositionally, these granites are S–type, formed in a collisional tectonic setting. Zircons possess an internal structure, mineral inclusions, and geochemical characteristics typical of magmatic origin. The U–Th–Pb geochronology and geochemistry were assessed using the laser ablation multi–collector inductively coupled plasma spectrometry (LA–ICP–MS) technique. U–Th–Pb isotope dating of zircons from two different samples revealed their age, estimated from the upper intersection of the discordia, to be 1845 ± 19 Ma. Zircons from one sample contained inherited cores belonging to three age groups: Paleoarchean (3.52 Ga), Neoarchean (2.78 Ga and 2.62 Ga), and Paleoproterozoic (2.1 Ga). Zircons with ages of 3.52, 2.62, and 2.1 Ga were interpreted as magmatic based on their geochemical characteristics. The 2.78 Ga core was interpreted as metamorphic. The observed inheritance is consistent with the melting of sedimentary rocks. The inherited zircons could have originated from Aravalli and Bundelkhand Craton and Paleoproterozoic Aravalli Fold Belt rocks. This confirms that the studied granites are S–type and could have been formed in a collisional environment at 1.85 Ga on the western flank of the Columbia Supercontinent.


2019 ◽  
Author(s):  
Ingo Strenge ◽  
Carsten Engelhard

<p>The article demonstrates the importance of using a suitable approach to compensate for dead time relate count losses (a certain measurement artefact) whenever short, but potentially strong transient signals are to be analysed using inductively coupled plasma mass spectrometry (ICP-MS). Findings strongly support the theory that inadequate time resolution, and therefore insufficient compensation for these count losses, is one of the main reasons for size underestimation observed when analysing inorganic nanoparticles using ICP-MS, a topic still controversially discussed.</p>


Author(s):  
Zixiao Pan ◽  
Wei Wei ◽  
Fuhe Li

Abstract This paper introduces our effort in failure analysis of a 200 nm thick metal interconnection on a glass substrate and covered with a passivation layer. Structural damage in localized areas of the metal interconnections was observed with the aid of focused ion beam (FIB) cross-sectioning. Laser ablation inductively coupled plasma mass spectroscopy (LA ICP-MS) was then applied to the problematic areas on the interconnection for chemical survey. LA ICP-MS showed direct evidence of localized chemical contamination, which has likely led to corrosion (or over-etching) of the metal interconnection and the assembly failure. Due to the high detection sensitivity of LA ICP-MS and its compatibility with insulating material analysis, minimal sample preparation is required. As a result, the combination of FIB and LA ICP-MS enabled successful meso-scale failure analysis with fast turnaround and reasonable cost.


Sign in / Sign up

Export Citation Format

Share Document