scholarly journals Full-scale self-propulsion simulation with a discretized propeller

2021 ◽  
Vol 4 (398) ◽  
pp. 15-23
Author(s):  
Zhang Qingshan ◽  
◽  
Chen Weimin ◽  
Du Yunlong ◽  
Dong Guoxiang ◽  
...  

A comparison between towing tank testing and full-scale CFD simulations is presented at three different target speeds. For the current self-propulsion simulation, the self-propulsion point was obtained using polynomial interpolation. The studies of boundary layer thickness, a basic grid uncertainty assessment and verification were performed to give some confidence of grid application to current self-propulsion simulation. All simulations are performed using a commercial CFD software STAR-CCM+. It is concluded that with high-fidelity numerical methods, it’s possible to treat hull roughness and directly calculate full-scale flow characteristics, including the effects of the free surface, none-linearity, turbulence and the interaction between propeller, hull and the flow field.

2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


2021 ◽  
Vol 238 ◽  
pp. 109654
Author(s):  
Michal Orych ◽  
Sofia Werner ◽  
Lars Larsson
Keyword(s):  

Author(s):  
Charles Lefevre ◽  
Yiannis Constantinides ◽  
Jang Whan Kim ◽  
Mike Henneke ◽  
Robert Gordon ◽  
...  

Vortex-Induced Motion (VIM), which occurs as a consequence of exposure to strong current such as Loop Current eddies in the Gulf of Mexico, is one of the critical factors in the design of the mooring and riser systems for deepwater offshore structures such as Spars and multi-column Deep Draft Floaters (DDFs). The VIM response can have a significant impact on the fatigue life of mooring and riser components. In particular, Steel Catenary Risers (SCRs) suspended from the floater can be sensitive to VIM-induced fatigue at their mudline touchdown points. Industry currently relies on scaled model testing to determine VIM for design. However, scaled model tests are limited in their ability to represent VIM for the full scale structure since they are generally not able to represent the full scale Reynolds number and also cannot fully represent waves effects, nonlinear mooring system behavior or sheared and unsteady currents. The use of Computational Fluid Dynamics (CFD) to simulate VIM can more realistically represent the full scale Reynolds number, waves effects, mooring system, and ocean currents than scaled physical model tests. This paper describes a set of VIM CFD simulations for a Spar hard tank with appurtenances and their comparison against a high quality scaled model test. The test data showed considerable sensitivity to heading angle relative to the incident flow as well as to reduced velocity. The simulated VIM-induced sway motion was compared against the model test data for different reduced velocities (Vm) and Spar headings. Agreement between CFD and model test VIM-induced sway motion was within 9% over the full range of Vm and headings. Use of the Improved Delayed Detached Eddy Simulation (IDDES, Shur et al 2008) turbulence model gives the best agreement with the model test measurements. Guidelines are provided for meshing and time step/solver setting selection.


Author(s):  
J R Shahraki ◽  
G A Thomas ◽  
M R Davis

The effect of various centre bow lengths on the motions and wave-induced slamming loads on wave-piercing catamarans is investigated. A 2.5 m hydroelastic segmented model was tested with three different centre bow lengths and towed in regular waves in a towing tank. Measurements were made of the model motions, slam loads and vertical bending moments in the model demi-hulls. The model experiments were carried out for a test condition equivalent to a wave height of 2.68 m and a speed of 20 knots at full scale. Bow accelerations and vertical bending moments due to slamming showed significant changes with the change in centre bow, the longest centre bow having the highest wave-induced loads and accelerations. The increased volume of displaced water which is constrained beneath the bow archways is identified as the reason for this increase in the slamming load. In contrast it was found that the length of centre bow has a relatively small effect on the heave and pitch motions in slamming conditions.


Author(s):  
Roland Mücke

MCrAlY coatings are applied in industrial gas turbines and aircraft engines to protect surfaces of hot gas exposed components from oxidation and corrosion at elevated temperature. Apart from oxidation resistance, coatings have to withstand cracking caused by cyclic deformation since coating cracks might propagate into the substrate material and thus limit the lifetime of the parts. In this context, the prediction of the coating maximum stress and the strain range during cyclic loading is important for the lifetime analysis of coated components. Analyzing the state of stress in the coating requires the application of viscoplastic material models. A coupled full-scale cyclic analysis of substrate and coating, however, is very expensive because of the different flow characteristics of both materials. Therefore, this paper proposes an uncoupled modeling approach, which consists of a full-scale cyclic analysis of the component without coating and a fast postprocessing procedure based on a node-by-node integration of the coating constitutive model. This paper presents different aspects of the coating viscoplastic behavior and their computational modeling. The uncoupled analysis is explained in detail and a validation of the procedure is addressed. Finally, the application of the uncoupled modeling approach to a coated turbine blade exposed to a complex engine start-up and shut-down procedure is shown. Throughout the paper bold symbols denote tensors and vectors, e.g., σ stands for the stress tensor with the components σij. The superscripts (.)S and (.)C symbolize the substrate and the coating, respectively, e.g., εthS stands for the tensor of substrate thermal strain. Further symbols are explained in the text.


Author(s):  
Liviu Crudu ◽  
Radu Bosoancă ◽  
Dan Obreja

The evaluation of ship resistance is of paramount importance having a decisive impact on the economic performances and efficiency depending on mission. If new IMO requirements through the Energy Efficiency Design Index (EEDI) are taken into account the necessity to have more and more accurate tools capable to consider the influences of different parameters became mandatory. The availability of towing tank facilities and the full scale trials are the practical means in order to be able to confirm the accuracy of theoretical formulations and to define the limits of CFD applications. Based on the results of the towing tank tests, a direct comparison with the results provided by classical methods and CFD computations can be systematically can be performed. On the other hand, the influences of the modifications operated on the fore part of the ship aretheoretically evaluated and compared with the towing tank results. Consequently, the paper is focused on the comparison of the results evaluated using different tools which have been carried out for a Chemical Tanker built by Constanta Shipyard Romania.


2021 ◽  
Author(s):  
Davide Conti ◽  
Nikolay Dimitrov ◽  
Alfredo Peña ◽  
Thomas Herges

Abstract. In this first part of a two-part work, we study the calibration of the Dynamic Wake Meandering (DWM) model using high spatial and temporal resolution SpinnerLidar measurements of the wake field collected at the Scaled Wind Farm Technology (SWiFT) facility located in Lubbock, Texas, U.S.A. We derive two-dimensional wake flow characteristics including wake deficit, wake turbulence and wake meandering from the lidar observations under different atmospheric stability conditions, inflow wind speeds and downstream distances up to five rotor diameters. We then apply Bayesian inference to obtain a probabilistic calibration of the DWM model, where the resulting joint distribution of parameters allows both for model implementation and uncertainty assessment. We validate the resulting fully-resolved wake field predictions against the lidar measurements and discuss the most critical sources of uncertainty. The results indicate that the DWM model can accurately predict the mean wind velocity and turbulence fields in the far wake region beyond four rotor diameters, as long as properly-calibrated parameters are used and wake meandering time series are accurately replicated. We demonstrate that the current DWM-model parameters in the IEC standard lead to conservative wake deficit predictions. Finally, we provide practical recommendations for reliable calibration procedures.


Sign in / Sign up

Export Citation Format

Share Document