scholarly journals Heavy Oil Production with Energy Effective Steam-Assisted Gravity Drainage

2016 ◽  
Vol 1 (4) ◽  
pp. 349-358
Author(s):  
M. Jonskås Høhrbye ◽  
V. Mathiesen ◽  
B.M.E. Moldestad
2019 ◽  
Vol 38 (4) ◽  
pp. 801-818
Author(s):  
Ren-Shi Nie ◽  
Yi-Min Wang ◽  
Yi-Li Kang ◽  
Yong-Lu Jia

The steam chamber rising process is an essential feature of steam-assisted gravity drainage. The development of a steam chamber and its production capabilities have been the focus of various studies. In this paper, a new analytical model is proposed that mimics the steam chamber development and predicts the oil production rate during the steam chamber rising stage. The steam chamber was assumed to have a circular geometry relative to a plane. The model includes determining the relation between the steam chamber development and the production capability. The daily oil production, steam oil ratio, and rising height of the steam chamber curves influenced by different model parameters were drawn. In addition, the curve sensitivities to different model parameters were thoroughly considered. The findings are as follows: The daily oil production increases with the steam injection rate, the steam quality, and the degree of utilization of a horizontal well. In addition, the steam oil ratio decreases with the steam quality and the degree of utilization of a horizontal well. Finally, the rising height of the steam chamber increases with the steam injection rate and steam quality, but decreases with the horizontal well length. The steam chamber rising rate, the location of the steam chamber interface, the rising time, and the daily oil production at a certain steam injection rate were also predicted. An example application showed that the proposed model is able to predict the oil production rate and describe the steam chamber development during the steam chamber rising stage.


Geophysics ◽  
2015 ◽  
Vol 80 (2) ◽  
pp. WA99-WA111 ◽  
Author(s):  
Anya Reitz ◽  
Richard Krahenbuhl ◽  
Yaoguo Li

There is presently an increased need to monitor production efficiency as heavy oil reservoirs become more economically viable. We present a feasibility study of monitoring steam-assisted gravity drainage (SAGD) reservoirs using time-lapse gravimetry and gravity gradiometry. Even though time-lapse seismic has historically shown great success for SAGD monitoring, the gravimetry and gravity gradiometry methods offer a low-cost interseismic alternative that can complement the seismic method, increase the survey frequency, and decrease the cost of monitoring. In addition, both gravity-based methods are directly sensitive to the density changes that occur as a result of the replacement of heavy oil by steam. Advances in technologies have made both methods viable candidates for consideration in time-lapse reservoir monitoring, and we have numerically evaluated their potential application in monitoring SAGD production. The results indicate that SAGD production should produce a strong anomaly for both methods at typical SAGD reservoir depths. However, the level of detail for steam-chamber geometries and separations that can be recovered from the gravimetry and gravity gradiometry data is site dependent. Gravity gradiometry shows improved monitoring ability, such as better recovery of nonuniform steam movement due to reservoir heterogeneity, at shallower production reservoirs. Gravimetry has the ability to detect SAGD steam-chamber growth to greater depths than does gravity gradiometry, although with decreasing resolution of the expanding steam chambers.


Sign in / Sign up

Export Citation Format

Share Document