scholarly journals Ex-situ bioremediation of polycyclic aromatic hydrocarbons in sewage sludge

Author(s):  
J. E. Schmidt ◽  
S. B. Larsen ◽  
D. Karakashev
2009 ◽  
Vol 164 (2-3) ◽  
pp. 1568-1572 ◽  
Author(s):  
Sille Bendix Larsen ◽  
Dimitar Karakashev ◽  
Irini Angelidaki ◽  
Jens Ejbye Schmidt

2008 ◽  
Vol 99 (18) ◽  
pp. 8819-8823 ◽  
Author(s):  
M. Hafidi ◽  
S. Amir ◽  
A. Jouraiphy ◽  
P. Winterton ◽  
M. El Gharous ◽  
...  

2003 ◽  
Vol 48 (4) ◽  
pp. 53-60 ◽  
Author(s):  
E. Trably ◽  
D. Patureau ◽  
J.P. Delgenes

Anaerobically stabilized sewage sludge has potential to partially substitute synthetic fertilizers. The main risk with the recycling of urban sludge on agricultural soils is the accumulation of unwanted products, such as trace metals and organic micropollutants. In this context, the polycyclic aromatic hydrocarbons (PAHs) are particularly monitored because of their toxic properties at low concentrations and their high resistance to biological degradation. The aim of the present study was to optimize PAHs removal during anaerobic digestion of contaminated sewage sludge. Thirteen PAHs were monitored in laboratory-scale anaerobic bioreactors under mesophilic (35°C) and thermophilic (55°C) methanogenic conditions. Abiotic losses were statistically significant for the lightest PAHs, such as fluorene, phenanthrene and anthracene. It was shown that PAH removal was due to a specific biological activity. Biological PAHs removal was significantly enhanced by an increase of the temperature from 35°C to 55°C, especially for the heaviest PAHs. Bioaugmentation experiment was also performed by addition of a PAH-adapted bacterial consortium to a non-acclimated reactor. Significant enhancement of PAHs removal was observed. It was finally shown that PAH removal efficiencies and methanogenic performances were closely linked. The rate of biogas production may be used as an indicator of bacterial activity on PAH removal.


Chemosphere ◽  
2005 ◽  
Vol 58 (4) ◽  
pp. 449-458 ◽  
Author(s):  
S. Amir ◽  
M. Hafidi ◽  
G. Merlina ◽  
H. Hamdi ◽  
J.C. Revel

2020 ◽  
Vol 10 (11) ◽  
pp. 3684 ◽  
Author(s):  
Tahseen Sayara ◽  
Antoni Sánchez

Bioremediation of contaminated soils has gained increasing interest in recent years as a low-cost and environmentally friendly technology to clean soils polluted with anthropogenic contaminants. However, some organic pollutants in soil have a low biodegradability or are not bioavailable, which hampers the use of bioremediation for their removal. This is the case of polycyclic aromatic hydrocarbons (PAHs), which normally are stable and hydrophobic chemical structures. In this review, several approaches for the decontamination of PAH-polluted soil are presented and discussed in detail. The use of compost as biostimulation- and bioaugmentation-coupled technologies are described in detail, and some parameters, such as the stability of compost, deserve special attention to obtain better results. Composting as an ex situ technology, with the use of some specific products like surfactants, is also discussed. In summary, the use of compost and composting are promising technologies (in all the approaches presented) for the bioremediation of PAH-contaminated soils.


2014 ◽  
Vol 70 (10) ◽  
pp. 1617-1624 ◽  
Author(s):  
Izabela Siebielska

Changes in naphthalene (Naph), phenanthrene (Phe), pyrene (Pyr), benzo(a)pyrene (BaP) and benzo(ghi)perylene (BgP) concentrations in a mixture of sewage sludge and the organic fraction of municipal waste were determined during composting and anaerobic digestion. The processes were carried out on a laboratory scale. The selected polycyclic aromatic hydrocarbons (PAHs) were analyzed in the samples using gas chromatography-mass spectrometry. The rates at which the PAHs concentrations decreased were evaluated during composting and anaerobic digestion. The selected PAHs degradation kinetics were compared during these processes. The most important conclusion of this work is that composting is much more effective than anaerobic digestion in removing five PAHs from a mixture of sewage sludge and the organic fraction of municipal waste.


Sign in / Sign up

Export Citation Format

Share Document