Study on application of polyurethane as a thermal insulation material for energy-efficient building

Author(s):  
Shihai Dong ◽  
Jiangfeng Dong ◽  
Qingyuan Wang
2019 ◽  
Vol 138 ◽  
pp. 01012
Author(s):  
Oleg Selivanov ◽  
Vladimir Chukhlanov ◽  
Marina Ilina

The paper presents the research results dealing with the development of energy-efficient thermal insulation material based on the binder of 10 % polycarbosilane solution in xylene, filled with various hollow microspheres and fibrous filler from quartz fibers. According to the research results the best effect was demonstrated by the samples of thermal insulation material, containing hollow carbon microspheres as filler. When the binder contains 10% of polycarbosilane solution in xylene-15-70% wt., hollow carbon microspheres 12-65% wt. and quartz fibers 8-43% wt., the resulting foam possesses reduced density, low thermal conductivity and good strength characteristics. It allowed this material to be recommended for the use as energy-efficient heat-resistant insulation in various industries, including power and aircraft engineering.


2013 ◽  
Vol 662 ◽  
pp. 433-436
Author(s):  
Jiang Zhu ◽  
Guo Zhong Li

Vitrified micro bubbles thermal insulation material was made of vitrified micro bubbles, cement, fly ash, gypsum and sodium silicate, by molding process. VAE emulsion and stearic acid-polyvinyl alcohol emulsion were added to improve water resistance of the material. Mixed with 10% VAE emulsion and 5% stearic acid-polyvinyl alcohol emulsion, properties of the material are followed as: flexural strength 0.64MPa, compressive strength 1.35MPa, softening coefficient 0.71 and 2h volumetric water absorption 6.9%.


Sign in / Sign up

Export Citation Format

Share Document