Influences of Emulsion on Water Resistance of Vitrified Micro Bubbles Thermal Insulation Material

2013 ◽  
Vol 662 ◽  
pp. 433-436
Author(s):  
Jiang Zhu ◽  
Guo Zhong Li

Vitrified micro bubbles thermal insulation material was made of vitrified micro bubbles, cement, fly ash, gypsum and sodium silicate, by molding process. VAE emulsion and stearic acid-polyvinyl alcohol emulsion were added to improve water resistance of the material. Mixed with 10% VAE emulsion and 5% stearic acid-polyvinyl alcohol emulsion, properties of the material are followed as: flexural strength 0.64MPa, compressive strength 1.35MPa, softening coefficient 0.71 and 2h volumetric water absorption 6.9%.

2012 ◽  
Vol 450-451 ◽  
pp. 1504-1512 ◽  
Author(s):  
Dan Shi ◽  
Ling Shi ◽  
Jun Ying Zhang ◽  
Jue Cheng

A novel nonflammable thermal insulation material for buildings was prepared by foaming sodium silicate solution with blowing agent. The material density is 274 kg/m3,with the compressive strength up to 2.0MPa and the coefficient of heat conductivity low to 0.08 W/ m•K.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2091
Author(s):  
Mohamed Saeed Barkhad ◽  
Basim Abu-Jdayil ◽  
Abdel Hamid I. Mourad ◽  
Muhammad Z. Iqbal

This work aims to provide an extensive evaluation on the use of polylactic acid (PLA) as a green, biodegradable thermal insulation material. The PLA was processed by melt extrusion followed by compression molding and then subjected to different annealing conditions. Afterwards, the thermal insulation properties and structural capacity of the PLA were characterized. Increasing the annealing time of PLA in the range of 0–24 h led to a considerable increase in the degree of crystallization, which had a direct impact on the thermal conductivity, density, and glass transition temperature. The thermal conductivity of PLA increased from 0.0643 W/(m·K) for quickly-cooled samples to 0.0904 W/(m·K) for the samples annealed for 24 h, while the glass transition temperature increased by approximately 11.33% to reach 59.0 °C. Moreover, the annealing process substantially improved the compressive strength and rigidity of the PLA and reduced its ductility. The results revealed that annealing PLA for 1–3 h at 90 °C produces an optimum thermal insulation material. The low thermal conductivity (0.0798–0.0865 W/(m·K)), low density (~1233 kg/m3), very low water retention (<0.19%) and high compressive strength (97.2–98.7 MPa) in this annealing time range are very promising to introduce PLA as a green insulation material.


Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 26 ◽  
Author(s):  
Yeou-Fong Li ◽  
Wai-Keong Sio ◽  
Ying-Kuan Tsai

In this paper, a compressive peak strength model for CFRP-confined thermal insulation materials under elevated temperature was proposed. The thermal insulation material was made by Portland cement with different portions of perlite. The compressive strengths of four different perlite ratios in weight, such as 0%, 10%, 20%, and 30% of thermal insulation materials, confined by one-layer, two-layer, and three-layer carbon fiber-reinforced polymer (CFRP) composite materials, were obtained. The test results indicated that the specimen’s compressive strength decreased with an increase in the amount of perlite replacement and increased with an increase in the number of CFRP wrapping layers. Based on the test results, a theoretical compressive peak strength model with some parameters was proposed. In the meantime, the compressive strengths of the above four different perlite ratios of thermal insulation materials under elevated temperature, such as ambient temperature, 100 °C, 150 °C, 200 °C, 250 °C, and 300 °C, were obtained. For compression tests of specimens with a fixed amount of perlite, the test results indicated that the specimen’s compressive strength decreased with an increase in temperature, highlighting a thermal softening phenomenon. Based on the test results, a compressive peak strength model with a thermal softening parameter was proposed to predict the peak strength under elevated temperature. Finally, a compressive peak strength model for thermal insulation material with CFRP confinement under different elevated temperature was derived, and it achieved acceptable results in comparison to the experimental results.


2011 ◽  
Vol 306-307 ◽  
pp. 994-997
Author(s):  
Cong Cong Jiang ◽  
Guo Zhong Li ◽  
Shui Zhang

A cement-based foamed lightweight thermal insulation material was prepared with cement, industrial waste (fly ash, steel slag) as the main raw materials, by using self-developed composite activator and foaming agent. The influence of foam content on dry density, compressive strength and thermal conductivity coefficient of material was studied, the activation mechanism of composite activator to fly ash and steel slag was discussed. Results showed that, the dry density and compressive strength of material decreased, and thermal conductivity coefficient decreased first and then increased with the increasing foam content.


2010 ◽  
Vol 156-157 ◽  
pp. 839-843
Author(s):  
Jin Xia Zhang ◽  
Yi Miao Nie ◽  
Shi Chao Li ◽  
Fu Sheng Niu

By using fly ash as raw material to prepare thermal insulation material in this research. The relationship between the compressive strength and the influence factors was systematically discussed. The compressive strength of the samples reached max when the dosage of silica fume was 5%, sodium hydroxide 40%,the solid-liquid ratio was 0.75 and the content of foam was 4%. The experimental results provided a good basis for manufacturing the thermal insulation material and improving its property.


2014 ◽  
Vol 541-542 ◽  
pp. 104-107
Author(s):  
Long Ma ◽  
Guo Zhong Li

Red mud foam lightweight thermal insulation material was prepared by red mud, fly ash, cement as main raw materials, adding a certain amount of adhesive, through ingredients, mixing, molding, foam, sintering process. The influence of the ratio of red mud and fly ash on the properties of materials was studied and the mechanism of influence was analyzed. The test results show that performances of the samples were best when the ratio of red mud and fly ash is 5:4 and its flexural strength is 0.44MPa, compressive strength is 1.23MPa, density is 481kg/m3.


Sign in / Sign up

Export Citation Format

Share Document