scholarly journals Punching shear and flexural strengths of ultra high performance concrete slabs

Author(s):  
C. Joh ◽  
H. Hwang ◽  
B. Kim
Author(s):  
Jian Liu ◽  
Yun Peng ◽  
Shenchun Xu ◽  
Pengcheng Yuan ◽  
Kefo Qu ◽  
...  

Author(s):  
Weina Meng ◽  
Kamal Henri Khayat

Ballastless track slab offers excellent stability and durability and has been well accepted in high-speed railways worldwide. Rails are typically laid on precast concrete slabs that are subjected to dynamic load transferred from the rails. Cracks can be induced by shrinkage and mechanical loading in concrete, which accelerates the degradation and affects the performance of the track slab. As tens of thousands of miles of ballastless track are constructed, effective and efficient maintenance for the concrete slabs has become an issue. In this paper, ultra-high performance concrete (UHPC) is proposed to fabricate ballastless track slab. UHPC is a superior fiber-reinforced, cementitioius mortar, which has greatly-improved mechanical strengths and durability. A recently-developed UHPC is evaluated in terms of the flowability, durability, shrinkage, and mechanical properties. A functionally-graded slab design is proposed with the consideration of initial material cost. The slab is cast with two layers: a layer of conventional concrete at the bottom, and a layer of UHPC on the top. A three-dimensional finite element model is developed for ballastless track slab whose flexural performance is investigated and compared with that of slab made with conventional concrete. Concrete damage plasticity model is incorporated to consider the post-cracking behavior. The results indicate that the proposed UHPC is promising for fabricating ballastless track slab with superior performance.


2015 ◽  
Vol 67 (10) ◽  
pp. 487-495 ◽  
Author(s):  
Doo-Yeol Yoo ◽  
Hyun-Oh Shin ◽  
Jin-Young Lee ◽  
Young-Soo Yoon

2021 ◽  
Vol 25 (Special) ◽  
pp. 4-115-4-126
Author(s):  
Liwaa Abd Alhussen ◽  
◽  
Layth A. Al-jaberi ◽  
Ra’id F. Abbas ◽  
◽  
...  

The reaction of column to flat slabs may cause what is known as “punching shear stresses” when the stress is normally concentrated within the perimeter around the loaded area. In general, the reinforced concrete slabs are not designed for any shear failure due to the sudden nature of this type of failure. Many solutions can be followed to overcome such issue like increasing the depth of slab and diameter of columns. Increasing the slab thickness may add extensive dead loads and can breaks the economy justifications of this structural member. On the other hand, increasing the diameter of any column may un accepted due to architectural purposes. The high performance concrete is such type of concrete that illustrate high levels of mechanical performance “structural behavior as a consequence” if compared with normal concrete. Due to that, the high performance concrete may give good alternative an exceeds the problem of punching as a result. The basic aim of this study is to propose a brief review regarding this field of research. However, this study is divided to three parts, the first is devoted to view a suitable background about the punching shear capacity of traditional concrete slabs. The second part is registered to view the past experience in reinforced concrete slabs punching capacity and have steel fibers while the second part is devoted to present the state of art concerning the punching shear of high performance concrete slabs.


Sign in / Sign up

Export Citation Format

Share Document