scholarly journals High velocity impact of carbon composite plates: perforation simulation

Author(s):  
E. Jacquet ◽  
A. Rouquand ◽  
O. Allix
Author(s):  
Shivdayal Patel ◽  
Suhail Ahmad ◽  
Puneet Mahajan

The safety predictions of composite armors require a probabilistic analysis to take into consideration scatters in the material properties and initial velocity. Damage initiation laws are used to account for matrix and fiber failure during high-velocity impact. A three-dimensional (3D) stochastic finite-element analysis of laminated composite plates under impact is performed to determine the probability of failure (Pf). The objective is to achieve the safest design of lightweight composite through the most efficient ply arrangement of S2 glass epoxy. Realistic damage initiation models are implemented. The Pf is obtained through the Gaussian process response surface method (GPRSM). The antisymmetric cross-ply arrangement is found to be the safest based on maximum stress and Yen and Hashin criteria simultaneously. Sensitivity analysis is performed to achieve the target reliability.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sebastian Heimbs ◽  
Tim Bergmann

An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds) is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.


2014 ◽  
Vol 111 ◽  
pp. 158-168 ◽  
Author(s):  
S. Heimbs ◽  
T. Bergmann ◽  
D. Schueler ◽  
N. Toso-Pentecôte

2012 ◽  
Vol 2 (4) ◽  
Author(s):  
Rahul Sikarwar ◽  
Raman Velmurugan ◽  
Velmuri Madhu

AbstractIn the present study, impact behavior of Kevlar/Epoxy composite plates has been carried out experimentally by considering different thicknesses and lay-up sequences and compared with analytical results. The effect of thickness, lay-up sequence on energy absorbing capacity has been studied for high velocity impact. Four lay-up sequences and four thickness values have been considered. Initial velocities and residual velocities are measured experimentally to calculate the energy absorbing capacity of laminates. Residual velocity of projectile and energy absorbed by laminates are calculated analytically. The results obtained from analytical study are found to be in good agreement with experimental results. It is observed from the study that 0/90 lay-up sequence is most effective for impact resistance. Delamination area is maximum on the back side of the plate for all thickness values and lay-up sequences. The delamination area on the back is maximum for 0/90/45/-45 laminates compared to other lay-up sequences.


2006 ◽  
Vol 134 ◽  
pp. 1257-1263 ◽  
Author(s):  
S. K. García-Castillo ◽  
S. Sánchez-Sáez ◽  
E. Barbero ◽  
C. Navarro

2020 ◽  
Vol 10 (2) ◽  
pp. 721 ◽  
Author(s):  
Yangyu Lu ◽  
Qingming Zhang ◽  
Yijiang Xue ◽  
Wenjin Liu ◽  
Renrong Long

Three types of multi-wall shielding were experimentally investigated for their performances under the high-velocity impact of a cm-size cylindrical projectile by using a two-stage light-gas gun. The three shields contained the same two aluminum bumpers but different rear walls, which were 7075-T651 aluminum (Al) plate, boron carbide (B4C)/Al 7075-T651/Kevlar composite plate and B4C/ultra-high molecular weight polyethylene (UHMW-PE) composite plate. The impact test was carried out using a cylindrical shape of 6 g mass 7075-T651 Al projectile in a speed range (1.6 to 1.9 km/s) to achieve an effective shield configuration. A numerical simulation was undertaken by using ANSYS Autodyn-3D and the results of this were in good agreement with the experimental results. Meanwhile, both the experimental and the numerical simulation results indicated that B4C/UHMW-PE composite plates performed a better interception of the high-velocity projectiles within the specific speed range and could be considered as a good configuration for intercepting large fragments in shielding design.


Sign in / Sign up

Export Citation Format

Share Document