scholarly journals The real smart grid for water: ensuring water sustainability via infrastructure and information

Urban Water ◽  
2012 ◽  
Author(s):  
G. Symmonds
2016 ◽  
Vol 59 ◽  
pp. 264-273 ◽  
Author(s):  
Ziyuan Cai ◽  
Ming Yu ◽  
Michael Steurer ◽  
Hui Li ◽  
Yizhou Dong
Keyword(s):  

2021 ◽  
Author(s):  
Kartikey Garg

<div><div><div><p>A majority of electricity consumed by humans comes from traditional power generators, that work on a centralised framework, distributing it through wires and grids. More than 80% of this electricity comes from fossil fuels, leading to large amounts of pollution, since it is carbon intensive. The distribution methods are inefficient as much energy is lost in transmission. This leads to it being expensive for the consumer, and makes them dependent on large corporations. A large percentage of the electricity bill goes towards paying off the investment in infrastructure needed to provide it. This model is clearly not sustainable. Furthermore, it is estimated that around 1.2 billion people live without access to safe electricity. This is primarily since electricity providers don’t deem building infrastructure for a remote or economically backward location as profitable enough, since they are unlikely to pay it back. Contrary to conventional system, our proposed framework will be focused at introducing the decentralised energy distribution and consumption using Blockchain. Many prior studies have been done to decentralise the energy distribution but due to security and trust scare the systems could not be fully adopted in the real setting. We take a look into the methodologies third parties can use to counter the security issues as well. However, by integrating blockchain into the existing smart grid architecture we open up the possibility of bypassing the tiring process of renewable certification, make a localised energy production a reality and detach the consumers from the dependency of central grid. To fully assimilate this environment with the end users we also discuss about the real time platform for prosumers and consumers to trade energy. At the end, we look at the costs, consumption and other attributes of three different community microgrids simu</p></div></div></div>


2019 ◽  
Vol 2019 ◽  
pp. 1-18
Author(s):  
Hongjie Wang ◽  
Yan Gao

The real-time pricing mechanism of smart grid based on demand response is an effective means to adjust the balance between energy supply and demand, whose implementation will impact the user's electricity consumption behaviour, the operation, and management in the future power systems. In this paper, we propose a complementarity algorithm to solve the real-time pricing of smart grid. The Karush–Kuhn–Tucker condition is considered in the social welfare maximisation model incorporating load uncertainty to transforming the model into a system of nonsmooth equations with Lagrangian multipliers, i.e., the shadow prices. The shadow price is used to determine the basic price of electricity. The system of nonsmooth equations is a complementarity problem, which enables us to study the existence and uniqueness of the equilibrium price and to design an online distributed algorithm to achieve the equilibrium between energy supply and demand. The proposed method is implemented in a simulation system composed of an energy provider and 100 users. Simulations results show that the proposed algorithm can motivate the users’ enthusiasm to participate in the demand side management and shift the peak loading. Furthermore, the proposed algorithm can improve the supply shortage. When compared with an online distributed algorithm based on the dual optimisation method, the proposed algorithm has a significantly lower running time and more accurate Lagrangian multipliers.


Author(s):  
Nachiket Kulkarni ◽  
S. V. N. L. Lalitha ◽  
Sanjay A. Deokar

The use of grid power systems based on the combinations of various electrical networks, information technology, and communication layers called as Smart Grid systems. The technique of smart grid suppressed the problems faced by conventional grid systems such as inefficient energy management, improper control actions, grid faults, human errors, etc. The recent research on smart grid provides the approach for the real-time control and monitoring of grid power systems based on bidirectional communications. However, the smart grid is yet to improve regarding efficiency, energy management, reliability, and cost-effectiveness by considering its real-time implementation. In this paper, we present the real-time design of efficient monitoring and control of grid power system using the remote cloud server. We utilized the remote cloud server to fetch, monitor and control the real-time power system data to improve the universal control and response time. The proper hardware panel designed and fabricated to establish the connection with the grid as well as remote cloud users. The authenticated cloud users are provisioned to access and control the grid power system from anywhere securely. For the user authentication, we proposed the novel approach to secure the complete smart grid system. Finally, we demonstrated the effectiveness of real-time monitoring and control of the grid power method with the use of structure of practical framework.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Zhuoqun Xia ◽  
Zhenwei Fang ◽  
Fengfei Zou ◽  
Jin Wang ◽  
Arun Kumar Sangaiah

The smart grid solves the growing load demand of electrical customers through two-way real-time communication of electricity supply and demand sides and home energy management system (HEMS). However, these technical features also bring network security risks to the real-time price signal of the smart grid. The real-time price attack (RTPA) can maliciously raise the real-time price in smart meter, resulting in an increase in electrical customers load demand, causing the extensive damage to the power transmission lines due to overload. In this paper, we based on the behavioral relationship between load demand of electrical customers and real-time price of electricity suppliers (ES), defined the game relationship between RTPA, ES, and electrical customers, established a price elasticity of electricity demand (PEED) model, and proposed a defensive strategy of real-time price attack based on multiperson zero-determinant strategy (MPZDS). The experimental results show that the combination of MPZDS to some extent cut the expected load demand of electrical customers and protect the safety of power transmission lines.


2021 ◽  
Author(s):  
Kartikey Garg

<div><div><div><p>A majority of electricity consumed by humans comes from traditional power generators, that work on a centralised framework, distributing it through wires and grids. More than 80% of this electricity comes from fossil fuels, leading to large amounts of pollution, since it is carbon intensive. The distribution methods are inefficient as much energy is lost in transmission. This leads to it being expensive for the consumer, and makes them dependent on large corporations. A large percentage of the electricity bill goes towards paying off the investment in infrastructure needed to provide it. This model is clearly not sustainable. Furthermore, it is estimated that around 1.2 billion people live without access to safe electricity. This is primarily since electricity providers don’t deem building infrastructure for a remote or economically backward location as profitable enough, since they are unlikely to pay it back. Contrary to conventional system, our proposed framework will be focused at introducing the decentralised energy distribution and consumption using Blockchain. Many prior studies have been done to decentralise the energy distribution but due to security and trust scare the systems could not be fully adopted in the real setting. We take a look into the methodologies third parties can use to counter the security issues as well. However, by integrating blockchain into the existing smart grid architecture we open up the possibility of bypassing the tiring process of renewable certification, make a localised energy production a reality and detach the consumers from the dependency of central grid. To fully assimilate this environment with the end users we also discuss about the real time platform for prosumers and consumers to trade energy. At the end, we look at the costs, consumption and other attributes of three different community microgrids simu</p></div></div></div>


Author(s):  
Yuanyuan Li ◽  
Junxiang Li ◽  
Zhensheng Yu ◽  
Jingxin Dong ◽  
Tingting Zhou

Sign in / Sign up

Export Citation Format

Share Document