scholarly journals Urban drainage and sustainable cities: how to achieve flood resilient societies?

Urban Water ◽  
2012 ◽  
Author(s):  
G. La Loggia ◽  
C. M. Fontanazza ◽  
G. Freni ◽  
V. Notaro ◽  
E. Oliveri ◽  
...  
Author(s):  
M. I. Rodríguez-Rojas ◽  
F. Huertas-Fernández ◽  
G. Martínez ◽  
B. Moreno

1993 ◽  
Vol 27 (12) ◽  
pp. 205-208
Author(s):  
Dirk-Th Kollatsch

For upgrading the urban drainage system (UDS) the reduction of pollution impacts is the priority task concerning the environmental protection of the receiving waters. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities within the UDS can be shown. Models to simulate the pollutant impacts, transport and the effects on the receiving waters are available. In a first step a pollutant transport model of sewer systems and a model to simulate the wastewater treatment processes are connected. With these models the efficiency of upgrading measures can be checked in all parts of urban drainage systems.


1992 ◽  
Vol 26 (9-11) ◽  
pp. 2609-2612
Author(s):  
D.-Th. Kollatsch

The most important task of urban drainage and waste water treatment in the future is the environmental care of rivers and receiving waters. For this it is necessary to have a look at all discharges of sewer systems and treatment facilities. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities can be shown. With these models the efficiency of upgrading measures can be proved in all parts of urban water systems.


1999 ◽  
Vol 39 (9) ◽  
pp. 269-276 ◽  
Author(s):  
R. Mehler ◽  
M. W. Ostrowski

Increasingly extended and alternative methods for urban stormwater management have been discussed in Germany and elsewhere. Without question an economically and ecologically sound combination of central and decentral measures will be a concept of the future. Yet, at present the introduction of approaches other than traditional combined sewer systems is restricted due to missing planning tools and technologies. Adding a number of frequently used Best Stormwater Management Practices (BSMP's) has widely extended the applicability of an existing stormwater water balance and pollution load model.


1999 ◽  
Vol 39 (9) ◽  
pp. 201-207
Author(s):  
Andreas Cassar ◽  
Hans-Reinhard Verworn

Most of the existing rainfall runoff models for urban drainage systems have been designed for off-line calculations. With a design storm or a historical rain event and the model system the rainfall runoff processes are simulated, the faster the better. Since very recently, hydrodynamic models have been considered to be much too slow for real time applications. However, with the computing power of today - and even more so of tomorrow - very complex and detailed models may be run on-line and in real time. While the algorithms basically remain the same as for off-line simulations, problems concerning timing, data management and inter process communication have to be identified and solved. This paper describes the upgrading of the existing hydrodynamic rainfall runoff model HYSTEM/EXTRAN and the decision finding model INTL for real time performance, their implementation on a network of UNIX stations and the experiences from running them within an urban drainage real time control project. The main focus is not on what the models do but how they are put into action and made to run smoothly embedded in all the processes necessary in operational real time control.


1999 ◽  
Vol 39 (9) ◽  
pp. 1-8 ◽  
Author(s):  
P. Harremoës ◽  
H. Madsen

Where is the balance between simplicity and complexity in model prediction of urban drainage structures? The calibration/verification approach to testing of model performance gives an exaggerated sense of certainty. Frequently, the model structure and the parameters are not identifiable by calibration/verification on the basis of the data series available, which generates elements of sheer guessing - unless the universality of the model is be based on induction, i.e. experience from the sum of all previous investigations. There is a need to deal more explicitly with uncertainty and to incorporate that in the design, operation and control of urban drainage structures.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 19-24 ◽  
Author(s):  
Richard Norreys ◽  
Ian Cluckie

Conventional UDS models are mechanistic which though appropriate for design purposes are less well suited to real-time control because they are slow running, difficult to calibrate, difficult to re-calibrate in real time and have trouble handling noisy data. At Salford University a novel hybrid of dynamic and empirical modelling has been developed, to combine the speed of the empirical model with the ability to simulate complex and non-linear systems of the mechanistic/dynamic models. This paper details the ‘knowledge acquisition module’ software and how it has been applied to construct a model of a large urban drainage system. The paper goes on to detail how the model has been linked with real-time radar data inputs from the MARS c-band radar.


Sign in / Sign up

Export Citation Format

Share Document