Modifications of rainfall runoff and decision finding models for on-line simulation in real time control

1999 ◽  
Vol 39 (9) ◽  
pp. 201-207
Author(s):  
Andreas Cassar ◽  
Hans-Reinhard Verworn

Most of the existing rainfall runoff models for urban drainage systems have been designed for off-line calculations. With a design storm or a historical rain event and the model system the rainfall runoff processes are simulated, the faster the better. Since very recently, hydrodynamic models have been considered to be much too slow for real time applications. However, with the computing power of today - and even more so of tomorrow - very complex and detailed models may be run on-line and in real time. While the algorithms basically remain the same as for off-line simulations, problems concerning timing, data management and inter process communication have to be identified and solved. This paper describes the upgrading of the existing hydrodynamic rainfall runoff model HYSTEM/EXTRAN and the decision finding model INTL for real time performance, their implementation on a network of UNIX stations and the experiences from running them within an urban drainage real time control project. The main focus is not on what the models do but how they are put into action and made to run smoothly embedded in all the processes necessary in operational real time control.

1992 ◽  
Vol 23 (2) ◽  
pp. 121-136 ◽  
Author(s):  
Fons Nelen ◽  
Annemarieke Mooijman ◽  
Per Jacobsen

A control simulation model, called LOCUS, is used to investigate the effects of spatially distributed rain and the possibilities to benefit from this phenomenon by means of real time control. The study is undertaken for a catchment in Copenhagen, where rainfall is measured with a network of 8 rain gauges. Simulation of a single rain event, which is assumed to be homogeneous, i.e. using one rain gauge for the whole catchment, leads to large over- and underestimates of the systems output variables. Therefore, when analyzing a single event the highest possible degree of rainfall information may be desired. Time-series simulations are performed for both an uncontrolled and a controlled system. It is shown that from a statistical point of view, rainfall distribution is NOT significant concerning the probability of occurrence of an overflow. The main contributing factor to the potential of real time control, concerning minimizing overflows, is to be found in the system itself, i.e. the distribution of available storage and discharge capacity. When other operational objectives are involved, e.g., to minimize peak flows to the treatment plant, rainfall distribution may be an important factor.


2010 ◽  
Vol 5 (3) ◽  
Author(s):  
Cheng-Nan Chang ◽  
Li-Ling Lee ◽  
Han-Hsien Huang ◽  
Ying-Chih Chiu

The performance of a real-time controlled Sequencing Batch Membrane Bioreactor (SBMBR) for removing organic matter and nitrogen from synthetic wastewater has been investigated in this study under two specific ammonia loadings of 0.0086 and 0.0045g NH4+-N gVSS−1 day−1. Laboratory results indicate that both COD and DOC removal are greater than 97.5% (w/w) but the major benefit of using membrane for solid-liquid separation is that the effluent can be decanted through the membrane while aeration is continued during the draw stage. With a continued aeration, the sludge cake layer is prevented from forming thus alleviating the membrane clogging problem in addition to significant nitrification activities observed in the draw stage. With adequate aeration in the oxic stage, the nitrogen removal efficiency exceeding 99% can be achieved with the SBMBR system. Furthermore, the SBMBR system has also been used to study the occurrence of ammonia valley and nitrate knee that can be used for real-time control of the biological process. Under appropriate ammonia loading rates, applicable ammonia valley and nitrate knee are detected. The real-time control of the SBMBR can be performed based on on-line ORP and pH measurements.


1997 ◽  
Vol 36 (8-9) ◽  
pp. 19-24 ◽  
Author(s):  
Richard Norreys ◽  
Ian Cluckie

Conventional UDS models are mechanistic which though appropriate for design purposes are less well suited to real-time control because they are slow running, difficult to calibrate, difficult to re-calibrate in real time and have trouble handling noisy data. At Salford University a novel hybrid of dynamic and empirical modelling has been developed, to combine the speed of the empirical model with the ability to simulate complex and non-linear systems of the mechanistic/dynamic models. This paper details the ‘knowledge acquisition module’ software and how it has been applied to construct a model of a large urban drainage system. The paper goes on to detail how the model has been linked with real-time radar data inputs from the MARS c-band radar.


2013 ◽  
Vol 554-557 ◽  
pp. 706-713 ◽  
Author(s):  
Fabien Poulhaon ◽  
Matthieu Rauch ◽  
Adrien Leygue ◽  
Jean Yves Hascoet ◽  
Francisco Chinesta

Real-time control of manufacturing processes is a challenging issue for nowadays industry. The need for ever more efficient production requires new strategies in order to make correct decisions in an acceptable time. In a large number of cases, operators working on a CNC machine tool have a reduced number of possibilities for interacting in real-time with the machine. Numerical simulation based control is in that sense an appealing alternative to the conventional approach since it provides the operator with an additional source of information, confirming his choices or in reverse suggesting a more adapted strategy. The main goal of this work is to propose a method to move from a bilateral approach (operator and CNC controller) to a trilateral one where the simulation is an active component of the manufacturing process. This paper focuses on a simple issue sometimes encountered in milling processes: how to remove a constant thickness of material at the surface of a part whose exact geometry is unknown? The difficulty lies in the choice of an appropriate trajectory for the tool. So far the method which is employed consists in acquiring the geometry of the part thanks to a palpation step made prior to milling. However, this step has to be repeated for each part and can become rather fastidious as the size of the part increases. The approach presented here gets rid of the palpation step and makes use of online measurements for identifying the real geometry and correcting the trajectory of the tool in accordance. By monitoring the forces applying on the tool (directly on the NC), we have access to the milling depth and therefore to the geometry of the part at several locations along the trajectory of the tool. This information is used as an input data for our numerical model running on an external device, which finally derives an approximation for the geometry. An optimized trajectory is then obtained and is updated on the machine. This procedure is repeated as the tool moves forward and it allows for a fast and robust on-line correction of the toolpath.


2018 ◽  
Vol 15 (4) ◽  
pp. 362-370 ◽  
Author(s):  
Stefan Kroll ◽  
Alessio Fenu ◽  
Tom Wambecq ◽  
Marjoleine Weemaes ◽  
Jan Van Impe ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3432
Author(s):  
Margherita Altobelli ◽  
Sara Simona Cipolla ◽  
Marco Maglionico

The increase in waterproof surfaces, a typical phenomenon of urbanization, on the one hand, reduces the volume of rainwater that naturally infiltrates the subsoil and, on the other, it determines the increase in speeds, flow rates, and outflow volume surface; at the same time, it causes a qualitative deterioration of the water. This study researched the optimal management of urban drainage systems via the combined application of real-time control and green technologies. A hydraulic model of the sewer system of the suburbs of Bologna (Italy) was set up using the Environmental Protection Agency (EPA) Storm Water Management Model (SWMM) to evaluate the reduction in water volume and the masses of pollutants discharged in water bodies. The combined application of these technologies allows significantly reducing both the pollutants released into the receiving water bodies and the overflow volumes, while optimizing the operation of the treatment plants. Green technologies cause an average reduction equal to 45% in volume and 53% of total suspended solids (TSS) sent to the receiver. The modeled cases represent only some of the possible configurations achievable on urban drainage systems; the combined use of different solutions could lead to further improvements in the overall functioning of the drainage system.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 409-417 ◽  
Author(s):  
Andrea G. Capodaglio

According to the present state-of-the-art, sewerage systems, sewage treatment plants and their subsequent improvements are often planned and designed as totally separate entities, each subject to a specific set of performance objectives. As a result, sewage treatment efficiency is subject to considerable variability, depending both on general hydrologic conditions in the urban watershed (wet versus dry periods), and on specific “instantaneous” operating conditions. It has been postulated that the integration of urban drainage and wastewater treatment design and operation could allow minimization of the harmful effects of discharges from treatment plants, overflows and surface water runoff. This “ideal condition” can be achieved through the introduction of so-called “real-time control” technology in sewerage collection and treatment operations. To be a feasible goal, this technology poses the demand for more powerful simulation models of either aspect of the system - or, ideally, of a unified sewer-and-treatment plant model - than most of those currently available. This paper examines the requirements of rainfall/runoff transformation and sewer flow models with respect to real-time control applications, and focuses on the methodology of stochastic, transfer function modelling, reporting application examples. Modalities and limitations of the extraction of information from the models thus derived are also analyzed.


Sign in / Sign up

Export Citation Format

Share Document