Comprehensive Planning of Urban Drainage and Wastewater Treatment

1993 ◽  
Vol 27 (12) ◽  
pp. 205-208
Author(s):  
Dirk-Th Kollatsch

For upgrading the urban drainage system (UDS) the reduction of pollution impacts is the priority task concerning the environmental protection of the receiving waters. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities within the UDS can be shown. Models to simulate the pollutant impacts, transport and the effects on the receiving waters are available. In a first step a pollutant transport model of sewer systems and a model to simulate the wastewater treatment processes are connected. With these models the efficiency of upgrading measures can be checked in all parts of urban drainage systems.

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2609-2612
Author(s):  
D.-Th. Kollatsch

The most important task of urban drainage and waste water treatment in the future is the environmental care of rivers and receiving waters. For this it is necessary to have a look at all discharges of sewer systems and treatment facilities. With simulation models the interactions between surface, sewer systems, overflow structures and treatment facilities can be shown. With these models the efficiency of upgrading measures can be proved in all parts of urban water systems.


1997 ◽  
Vol 36 (5) ◽  
pp. 373-380 ◽  
Author(s):  
C. Fronteau ◽  
W. Bauwens ◽  
P.A. Vanrolleghem

All the parts of an urban drainage system, i.e. the sewer system, the wastewater treatment plant (WWTP) and the river, should be integrated into one single model to assess the performance of the overall system and for the development of design and control strategies assisting in its sustainable and cost effective management. Existing models for the individual components of the system have to be merged in order to develop the integrated tool. One of the problems arising from this methodology is the incompatibility of state variables, processes and parameters used in the different modelling approaches. Optimisation of an urban drainage system, and of the wastewater treatment process in particular, requires a good knowledge of the wastewater composition. As important transformations take place between the emission from the household and the arrival at the treatment facility, sewer models should include these transformations in the sewer system. At present, however, research is still needed in order to increase our knowledge of these in-sewer processes. A comparison of the state variables, processes and parameters has been carried out in both sewer models (SMs) and activated sludge models (ASMs). An ASM approach is used for the description of reactions in sewer models. However, a difference is found in the expression for organic material (expressed in terms of BOD) and heterotrophic biomass is absent as a state variable, resulting in differences in processes and parameters. Reconciliation of both the models seems worthwhile and a preliminary solution is suggested in this paper.


2003 ◽  
Vol 47 (12) ◽  
pp. 65-71 ◽  
Author(s):  
J.L. Huisman ◽  
P. Krebs ◽  
W. Gujer

The urban drainage cycle is a very complex system with many interacting processes. Models are a great help to test different scenarios and improve the understanding of this system. At present, good models exist for the hydrodynamics of the sewer systems, for the biological conversions in the wastewater treatment plant (ASM 1 to 3) and for the receiving water (RWQM1). However, the traditional transport and conversion models for the sewer system are incompatible with the ASM definitions, making it difficult to link the models to come an integral and unified urban drainage model. In this work, a new sewer system model that is based on ASM3 has been coupled to an advanced nutrient removal model for the wastewater treatment plant. As both models are based on ASM3, they are unified in their definitions of the state variables and processes. This new combination has been used to test different scenarios and to test the influence of the sewer system on the treatment plant.


1991 ◽  
Vol 24 (6) ◽  
pp. 157-163
Author(s):  
E. Ristenpart ◽  
D. Wittenberg

Impacts from combined sewer systems on receiving waters are heavily polluting a lot of small river ecosystems. A simulation model which can be used to predict the development of water quality after combined sewer overflows and other impacts from the urban drainage system has been developed. This model works with hydrodynamic flow calculation because it is applied in a system of small wetland creeks with nonstationary flow conditions. The numerical solution of the differential equations is described as well as calibration results. It is shown that water quality simulation based on the one-dimensional mass transport equation is possible for nonstationary flow conditions and is going to become very useful in urban drainage planning.


There is an extreme lack of statistics about Kabul city wastewater management. Therefore, the objectives of this study were to investigate and address the current circumstances and key challenges of domestic wastewater management in residential areas. In addition, to recommend sustainable solutions. The methodology adopted includes the use of questionnaires, field observation and review relevant documents from related stakeholders. The result indicated that more than 50% of households do not have improved toilets. There are no proper wastewater treatment plants except Macroyans’ wastewater treatment facilities that are not worked properly. Furthermore, there is no proper drainage system. Approximately 100 % of domestic wastewater is discharged to the environment without appropriate treatment that creates severe health and environmental problems such as groundwater pollution, bad odors, and effects on biodiversity. The major diseases are diarrhea, malaria, cholera, and typhoid. The key challenges of domestic wastewater management include; absence of improved sanitation facilities, lack of proper wastewater treatment plants and drainages system, poor government responsibilities, deficiency of public participation and unsolid of sustainable wastewater management framework. According to the current circumstances and challenges of domestic wastewater management: decentralized wastewater treatment technologies, enforcement of legislation, decentralization of planning and budgeting to local institutions, involving public, planners and policy-makers at all level and forming of a sustainable wastewater management framework are the main elements which can contribute with wastewater management sustainability in Kabul city


1993 ◽  
Vol 27 (12) ◽  
pp. 31-70 ◽  
Author(s):  
J. Marsalek ◽  
T. O. Barnwell ◽  
W. Geiger ◽  
M. Grottker ◽  
W. C. Huber ◽  
...  

Design and operation of urban drainage systems are addressed in the context of the urban water system comprising drainage, sewage treatment plants and receiving waters. The planning and design of storm sewers are reviewed with reference to planning objectives, design objectives, flows and pollutant loads, sewer system structures and urban runoff control and treatment. The discussion of combined sewers focuses on hydraulic design of combined sewer systems, including combined sewer overflow (CSO) structures, and the use of CSO structures and storage in control of CSOs. The section on operation of sewer systems focuses on real time control, its feasibility, planning, design, operation and applications. Sewer system planning and design are generally conducted using computer modelling tools and procedures which are reviewed in the last section. A brief listing of selected models focuses on internationally used models. Finally, it was concluded that further improvements in environmental and ecological protection of urban waters is feasible only by consideration of urban drainage systems in conjunctions with sewage treatment and water quality in the receiving waters.


2013 ◽  
Vol 69 (2) ◽  
pp. 422-429 ◽  
Author(s):  
Tian Li ◽  
Wei Zhang ◽  
Cang Feng ◽  
Jun Shen

To assess the performance of urban drainage systems in metropolitan areas in southern China, 12 urban drainage systems, including nine separate sewer systems (SSSs) and three combined sewer systems (CSSs) were monitored from 2008 to 2012 in Shanghai and Hefei. Illicit connection rates of SSS were determined. The results indicate that serious illicit connections exist for most SSSs. Annual volume balance for two SSSs with serious illicit connection was assessed with a hydraulic model to determine the dry weather overflow volume. Although interception facilities have been implemented in SSSs, for some systems with serious illicit connections, a considerable volume of dry weather overflow still existed. Combined with monitoring of dry/wet weather flow quality, the pollutant load caused by wet/dry weather overflow was quantified. The results revealed that there was no obvious advantage of having SSSs over CSSs in terms of pollutant control. The serious pollution caused by illicit connections and insufficient management occurs in many cities in China. The performance assessment of separate and CSSs in Shanghai and Hefei provides important lessons and practical experience that can be applied to the construction and management of urban drainage system in China as well as other developing countries.


1994 ◽  
Vol 29 (1-2) ◽  
pp. 277-282 ◽  
Author(s):  
D. Grotehusmann ◽  
A. Khelil ◽  
F. Sieker ◽  
M. Uhl

A System of INterconnected Infiltration POnds and Trenches (SINIPOT) is presented as an alternative to classical solutions for the extension and/or renovation of urban drainage systems in Germany. In many cities, modifications of the existing drainage network have been necessitated by restrictive pollution laws. For a catchment in the City of Gelsenkirchen, long term simulations with a hydrologic transport model have been performed for three different sanitation solutions. The most important comparison criteria are the Combined Sewer Overflow (CSO) quantities and the induced flow pattern in the receiving waters (a small creek).


Sign in / Sign up

Export Citation Format

Share Document