scholarly journals Top-k Supervise Feature Selection via ADMM for Integer Programming

Author(s):  
Mingyu Fan ◽  
Xiaojun Chang ◽  
Xiaoqin Zhang ◽  
Di Wang ◽  
Liang Du

Recently, structured sparsity inducing based feature selection has become a hot topic in machine learning and pattern recognition. Most of the sparsity inducing feature selection methods are designed to rank all features by certain criterion and then select the k top ranked features, where k is an integer. However, the k top features are usually not the top k features and therefore maybe a suboptimal result. In this paper, we propose a novel supervised feature selection method to directly identify the top k features. The new method is formulated as a classic regularized least squares regression model with two groups of variables. The problem with respect to one group of the variables turn out to be a 0-1 integer programming, which had been considered very hard to solve. To address this, we utilize an efficient optimization method to solve the integer programming, which first replaces the discrete 0-1 constraints with two continuous constraints and then utilizes the alternating direction method of multipliers to optimize the equivalent problem. The obtained result is the top subset with k features under the proposed criterion rather than the subset of k top features. Experiments have been conducted on benchmark data sets to show the effectiveness of proposed method.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Kun Dai ◽  
Hong-Yi Yu ◽  
Qing Li

Feature selection has proved to be a beneficial tool in learning problems with the main advantages of interpretation and generalization. Most existing feature selection methods do not achieve optimal classification performance, since they neglect the correlations among highly correlated features which all contribute to classification. In this paper, a novel semisupervised feature selection algorithm based on support vector machine (SVM) is proposed, termed SENFS. In order to solve SENFS, an efficient algorithm based on the alternating direction method of multipliers is then developed. One advantage of SENFS is that it encourages highly correlated features to be selected or removed together. Experimental results demonstrate the effectiveness of our feature selection method on simulation data and benchmark data sets.


Author(s):  
Ting Xie ◽  
Taiping Zhang

As a powerful unsupervised learning technique, clustering is the fundamental task of big data analysis. However, many traditional clustering algorithms for big data that is a collection of high dimension, sparse and noise data do not perform well both in terms of computational efficiency and clustering accuracy. To alleviate these problems, this paper presents Feature K-means clustering model on the feature space of big data and introduces its fast algorithm based on Alternating Direction Multiplier Method (ADMM). We show the equivalence of the Feature K-means model in the original space and the feature space and prove the convergence of its iterative algorithm. Computationally, we compare the Feature K-means with Spherical K-means and Kernel K-means on several benchmark data sets, including artificial data and four face databases. Experiments show that the proposed approach is comparable to the state-of-the-art algorithm in big data clustering.


2019 ◽  
Vol 47 (3) ◽  
pp. 154-170
Author(s):  
Janani Balakumar ◽  
S. Vijayarani Mohan

Purpose Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content. Design/methodology/approach This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper. Findings The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy. Originality/value This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.


2021 ◽  
pp. 1-12
Author(s):  
Emmanuel Tavares ◽  
Alisson Marques Silva ◽  
Gray Farias Moita ◽  
Rodrigo Tomas Nogueira Cardoso

Feature Selection (FS) is currently a very important and prominent research area. The focus of FS is to identify and to remove irrelevant and redundant features from large data sets in order to reduced processing time and to improve the predictive ability of the algorithms. Thus, this work presents a straightforward and efficient FS method based on the mean ratio of the attributes (features) associated with each class. The proposed filtering method, here called MRFS (Mean Ratio Feature Selection), has only equations with low computational cost and with basic mathematical operations such as addition, division, and comparison. Initially, in the MRFS method, the average from the data sets associated with the different outputs is computed for each attribute. Then, the calculation of the ratio between the averages extracted from each attribute is performed. Finally, the attributes are ordered based on the mean ratio, from the smallest to the largest value. The attributes that have the lowest values are more relevant to the classification algorithms. The proposed method is evaluated and compared with three state-of-the-art methods in classification using four classifiers and ten data sets. Computational experiments and their comparisons against other feature selection methods show that MRFS is accurate and that it is a promising alternative in classification tasks.


2016 ◽  
Vol 28 (4) ◽  
pp. 716-742 ◽  
Author(s):  
Saurabh Paul ◽  
Petros Drineas

We introduce single-set spectral sparsification as a deterministic sampling–based feature selection technique for regularized least-squares classification, which is the classification analog to ridge regression. The method is unsupervised and gives worst-case guarantees of the generalization power of the classification function after feature selection with respect to the classification function obtained using all features. We also introduce leverage-score sampling as an unsupervised randomized feature selection method for ridge regression. We provide risk bounds for both single-set spectral sparsification and leverage-score sampling on ridge regression in the fixed design setting and show that the risk in the sampled space is comparable to the risk in the full-feature space. We perform experiments on synthetic and real-world data sets; a subset of TechTC-300 data sets, to support our theory. Experimental results indicate that the proposed methods perform better than the existing feature selection methods.


Author(s):  
MINGXIA LIU ◽  
DAOQIANG ZHANG

As thousands of features are available in many pattern recognition and machine learning applications, feature selection remains an important task to find the most compact representation of the original data. In the literature, although a number of feature selection methods have been developed, most of them focus on optimizing specific objective functions. In this paper, we first propose a general graph-preserving feature selection framework where graphs to be preserved vary in specific definitions, and show that a number of existing filter-type feature selection algorithms can be unified within this framework. Then, based on the proposed framework, a new filter-type feature selection method called sparsity score (SS) is proposed. This method aims to preserve the structure of a pre-defined l1 graph that is proven robust to data noise. Here, the modified sparse representation based on an l1-norm minimization problem is used to determine the graph adjacency structure and corresponding affinity weight matrix simultaneously. Furthermore, a variant of SS called supervised SS (SuSS) is also proposed, where the l1 graph to be preserved is constructed by using only data points from the same class. Experimental results of clustering and classification tasks on a series of benchmark data sets show that the proposed methods can achieve better performance than conventional filter-type feature selection methods.


2021 ◽  
Author(s):  
Ping Zhang ◽  
Jiyao Sheng ◽  
Wanfu Gao ◽  
Juncheng Hu ◽  
Yonghao Li

Abstract Multi-label feature selection attracts considerable attention from multi-label learning. Information-theory based multi-label feature selection methods intend to select the most informative features and reduce the uncertain amount of information of labels. Previous methods regard the uncertain amount of information of labels as constant. In fact, as the classification information of the label set is captured by features, the remaining uncertainty of each label is changing dynamically. In this paper, we categorize labels into two groups: one contains the labels with few remaining uncertainty, which means that most of classification information with respect to the labels has been obtained by the already-selected features; another group contains the labels with extensive remaining uncertainty, which means that the classification information of these labels is neglected by already-selected features. Feature selection aims to select the new features with highly relevant to the labels in the second group. Existing methods do not distinguish the difference between two label groups and ignore the dynamic change amount of information of labels. To this end, a Relevancy Ratio is designed to clarify the dynamic change amount of information of each label under the condition of the already-selected features. Afterwards, a Weighted Feature Relevancy is defined to evaluate the candidate features. Finally, a new multi-label Feature Selection method based on Weighted Feature Relevancy (WFRFS) is proposed. The experiments obtain encouraging results of WFRFS in comparison to six multi-label feature selection methods on thirteen real-world data sets.


Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Feature selection sometimes also known as attribute subset selection is a process in which optimal subset of features are elected with respect to target data by reducing dimensionality and removing irrelevant data. There will be 2^n possible solutions for a dataset having n number of features which is difficult to solve by conventional attribute selection method. In such cases metaheuristic-based methods generally outruns the conventional methods. Therefore, this paper introduces a binary metaheuristic feature selection method bGWOSA which is based on grey wolf optimization and simulated annealing. The proposed feature selection method uses simulated annealing for enhancing the exploitation rate of grey wolf optimization method. The performance of the proposed binary feature selection method has been examined on the ten feature selection benchmark datasets taken from UCI repository and compared with binary cuckoo search, binary particle swarm optimization, binary grey wolf optimization, binary bat algorithm and binary hybrid whale optimization method. Statistical analysis and Experimental results validate the efficacy of proposed method.


Sign in / Sign up

Export Citation Format

Share Document