Artificial bee colony algorithm for feature selection and improved support vector machine for text classification

2019 ◽  
Vol 47 (3) ◽  
pp. 154-170
Author(s):  
Janani Balakumar ◽  
S. Vijayarani Mohan

Purpose Owing to the huge volume of documents available on the internet, text classification becomes a necessary task to handle these documents. To achieve optimal text classification results, feature selection, an important stage, is used to curtail the dimensionality of text documents by choosing suitable features. The main purpose of this research work is to classify the personal computer documents based on their content. Design/methodology/approach This paper proposes a new algorithm for feature selection based on artificial bee colony (ABCFS) to enhance the text classification accuracy. The proposed algorithm (ABCFS) is scrutinized with the real and benchmark data sets, which is contrary to the other existing feature selection approaches such as information gain and χ2 statistic. To justify the efficiency of the proposed algorithm, the support vector machine (SVM) and improved SVM classifier are used in this paper. Findings The experiment was conducted on real and benchmark data sets. The real data set was collected in the form of documents that were stored in the personal computer, and the benchmark data set was collected from Reuters and 20 Newsgroups corpus. The results prove the performance of the proposed feature selection algorithm by enhancing the text document classification accuracy. Originality/value This paper proposes a new ABCFS algorithm for feature selection, evaluates the efficiency of the ABCFS algorithm and improves the support vector machine. In this paper, the ABCFS algorithm is used to select the features from text (unstructured) documents. Although, there is no text feature selection algorithm in the existing work, the ABCFS algorithm is used to select the data (structured) features. The proposed algorithm will classify the documents automatically based on their content.

Feature selection can be used to improve the performance of classification algorithms. This study aims to use algorithms for feature selection in classification problems. The method in feature selection use to the Artificial Bee Colony (ABC) algorithm and Particle Swarm Optimization (PSO) based on Support Vector Machine (SVM). The ABC-SVM algorithm functions as a method of feature selection to choose the optimal subset according to the objectives set to provide the results of the classification. Then, the PSO-SVM as a comparison method in other feature selection. The results of the classification conducted by PSO-SVM with the vowel dataset is good classification (AUC 0.873), when compared with the ABC-SVM with the classification result is superior (AUC 0.996). The results of the Precision Recall and F-Measure calculations on the PSO-VSM algorithm have good classification results for sonar and wavefrom data sets. Meanwhile, the results of tests conducted by ABC-SVM get superior value from the classifier quality efficiency in the vowel data set


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255307
Author(s):  
Fujun Wang ◽  
Xing Wang

Feature selection is an important task in big data analysis and information retrieval processing. It reduces the number of features by removing noise, extraneous data. In this paper, one feature subset selection algorithm based on damping oscillation theory and support vector machine classifier is proposed. This algorithm is called the Maximum Kendall coefficient Maximum Euclidean Distance Improved Gray Wolf Optimization algorithm (MKMDIGWO). In MKMDIGWO, first, a filter model based on Kendall coefficient and Euclidean distance is proposed, which is used to measure the correlation and redundancy of the candidate feature subset. Second, the wrapper model is an improved grey wolf optimization algorithm, in which its position update formula has been improved in order to achieve optimal results. Third, the filter model and the wrapper model are dynamically adjusted by the damping oscillation theory to achieve the effect of finding an optimal feature subset. Therefore, MKMDIGWO achieves both the efficiency of the filter model and the high precision of the wrapper model. Experimental results on five UCI public data sets and two microarray data sets have demonstrated the higher classification accuracy of the MKMDIGWO algorithm than that of other four state-of-the-art algorithms. The maximum ACC value of the MKMDIGWO algorithm is at least 0.5% higher than other algorithms on 10 data sets.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Da Xu ◽  
Jialin Zhang ◽  
Hanxiao Xu ◽  
Yusen Zhang ◽  
Wei Chen ◽  
...  

Abstract Background The small number of samples and the curse of dimensionality hamper the better application of deep learning techniques for disease classification. Additionally, the performance of clustering-based feature selection algorithms is still far from being satisfactory due to their limitation in using unsupervised learning methods. To enhance interpretability and overcome this problem, we developed a novel feature selection algorithm. In the meantime, complex genomic data brought great challenges for the identification of biomarkers and therapeutic targets. The current some feature selection methods have the problem of low sensitivity and specificity in this field. Results In this article, we designed a multi-scale clustering-based feature selection algorithm named MCBFS which simultaneously performs feature selection and model learning for genomic data analysis. The experimental results demonstrated that MCBFS is robust and effective by comparing it with seven benchmark and six state-of-the-art supervised methods on eight data sets. The visualization results and the statistical test showed that MCBFS can capture the informative genes and improve the interpretability and visualization of tumor gene expression and single-cell sequencing data. Additionally, we developed a general framework named McbfsNW using gene expression data and protein interaction data to identify robust biomarkers and therapeutic targets for diagnosis and therapy of diseases. The framework incorporates the MCBFS algorithm, network recognition ensemble algorithm and feature selection wrapper. McbfsNW has been applied to the lung adenocarcinoma (LUAD) data sets. The preliminary results demonstrated that higher prediction results can be attained by identified biomarkers on the independent LUAD data set, and we also structured a drug-target network which may be good for LUAD therapy. Conclusions The proposed novel feature selection method is robust and effective for gene selection, classification, and visualization. The framework McbfsNW is practical and helpful for the identification of biomarkers and targets on genomic data. It is believed that the same methods and principles are extensible and applicable to other different kinds of data sets.


2016 ◽  
Vol 12 (4) ◽  
pp. 448-476 ◽  
Author(s):  
Amir Hosein Keyhanipour ◽  
Behzad Moshiri ◽  
Maryam Piroozmand ◽  
Farhad Oroumchian ◽  
Ali Moeini

Purpose Learning to rank algorithms inherently faces many challenges. The most important challenges could be listed as high-dimensionality of the training data, the dynamic nature of Web information resources and lack of click-through data. High dimensionality of the training data affects effectiveness and efficiency of learning algorithms. Besides, most of learning to rank benchmark datasets do not include click-through data as a very rich source of information about the search behavior of users while dealing with the ranked lists of search results. To deal with these limitations, this paper aims to introduce a novel learning to rank algorithm by using a set of complex click-through features in a reinforcement learning (RL) model. These features are calculated from the existing click-through information in the data set or even from data sets without any explicit click-through information. Design/methodology/approach The proposed ranking algorithm (QRC-Rank) applies RL techniques on a set of calculated click-through features. QRC-Rank is as a two-steps process. In the first step, Transformation phase, a compact benchmark data set is created which contains a set of click-through features. These feature are calculated from the original click-through information available in the data set and constitute a compact representation of click-through information. To find most effective click-through feature, a number of scenarios are investigated. The second phase is Model-Generation, in which a RL model is built to rank the documents. This model is created by applying temporal difference learning methods such as Q-Learning and SARSA. Findings The proposed learning to rank method, QRC-rank, is evaluated on WCL2R and LETOR4.0 data sets. Experimental results demonstrate that QRC-Rank outperforms the state-of-the-art learning to rank methods such as SVMRank, RankBoost, ListNet and AdaRank based on the precision and normalized discount cumulative gain evaluation criteria. The use of the click-through features calculated from the training data set is a major contributor to the performance of the system. Originality/value In this paper, we have demonstrated the viability of the proposed features that provide a compact representation for the click through data in a learning to rank application. These compact click-through features are calculated from the original features of the learning to rank benchmark data set. In addition, a Markov Decision Process model is proposed for the learning to rank problem using RL, including the sets of states, actions, rewarding strategy and the transition function.


2017 ◽  
Vol 26 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Piyabute Fuangkhon

AbstractMulticlass contour-preserving classification (MCOV) has been used to preserve the contour of the data set and improve the classification accuracy of a feed-forward neural network. It synthesizes two types of new instances, called fundamental multiclass outpost vector (FMCOV) and additional multiclass outpost vector (AMCOV), in the middle of the decision boundary between consecutive classes of data. This paper presents a comparison on the generalization of an inclusion of FMCOVs, AMCOVs, and both MCOVs on the final training sets with support vector machine (SVM). The experiments were carried out using MATLAB R2015a and LIBSVM v3.20 on seven types of the final training sets generated from each of the synthetic and real-world data sets from the University of California Irvine machine learning repository and the ELENA project. The experimental results confirm that an inclusion of FMCOVs on the final training sets having raw data can improve the SVM classification accuracy significantly.


Sign in / Sign up

Export Citation Format

Share Document