scholarly journals Multi-view Feature Learning with Discriminative Regularization

Author(s):  
Jinglin Xu ◽  
Junwei Han ◽  
Feiping Nie

More and more multi-view data which can capture rich information from heterogeneous features are widely used in real world applications. How to integrate different types of features, and how to learn low dimensional and discriminative information from high dimensional data are two main challenges. To address these challenges, this paper proposes a novel multi-view feature learning framework, which is regularized by discriminative information and obtains a feature learning model that contains multiple discriminative feature weighting matrices for different views, and then yields multiple low dimensional features used for subsequent multi-view clustering. To optimize the formulated objective function, we transform the proposed framework into a trace optimization problem which obtains the global solution in a closed form. Experimental evaluations on four widely used datasets and comparisons with a number of state-of-the-art multi-view clustering algorithms demonstrate the superiority of the proposed work.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shicheng Li ◽  
Qinghua Liu ◽  
Jiangyan Dai ◽  
Wenle Wang ◽  
Xiaolin Gui ◽  
...  

Feature representation learning is a key issue in artificial intelligence research. Multiview multimedia data can provide rich information, which makes feature representation become one of the current research hotspots in data analysis. Recently, a large number of multiview data feature representation methods have been proposed, among which matrix factorization shows the excellent performance. Therefore, we propose an adaptive-weighted multiview deep basis matrix factorization (AMDBMF) method that integrates matrix factorization, deep learning, and view fusion together. Specifically, we first perform deep basis matrix factorization on data of each view. Then, all views are integrated to complete the procedure of multiview feature learning. Finally, we propose an adaptive weighting strategy to fuse the low-dimensional features of each view so that a unified feature representation can be obtained for multiview multimedia data. We also design an iterative update algorithm to optimize the objective function and justify the convergence of the optimization algorithm through numerical experiments. We conducted clustering experiments on five multiview multimedia datasets and compare the proposed method with several excellent current methods. The experimental results demonstrate that the clustering performance of the proposed method is better than those of the other comparison methods.


Author(s):  
Chun-Hsiang Wang ◽  
Kang-Chun Fan ◽  
Chuan-Ju Wang ◽  
Ming-Feng Tsai

Customer reviews on platforms such as TripAdvisor and Amazon provide rich information about the ways that people convey sentiment on certain domains. Given these kinds of user reviews, this paper proposes UGSD, a representation learning framework for constructing domain-specific sentiment dictionaries from online customer reviews, in which we leverage the relationship between user-generated reviews and the ratings of the reviews to associate the reviewer sentiment with certain entities. The proposed framework has the following three main advantages. First, no additional annotations of words or external dictionaries are needed for the proposed framework; the only resources needed are the review texts and entity ratings. Second, the framework is applicable across a variety of user-generated content from different domains to construct domain-specific sentiment dictionaries. Finally, each word in the constructed dictionary is associated with a low-dimensional dense representation and a degree of relatedness to a certain rating, which enable us to obtain more fine-grained dictionaries and enhance the application scalability of the constructed dictionaries as the word representations can be adopted for various tasks or applications, such as entity ranking and dictionary expansion. The experimental results on three real-world datasets show that the framework is effective in constructing high-quality domain-specific sentiment dictionaries from customer reviews.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1978
Author(s):  
Yanying Mao ◽  
Honghui Chen

The representation learning of the knowledge graph projects the entities and relationships in the triples into a low-dimensional continuous vector space. Early representation learning mostly focused on the information contained in the triplet itself but ignored other useful information. Since entities have different types of representations in different scenarios, the rich information in the types of entity levels is helpful for obtaining a more complete knowledge representation. In this paper, a new knowledge representation frame (TRKRL) combining rule path information and entity hierarchical type information is proposed to exploit interpretability of logical rules and the advantages of entity hierarchical types. Specifically, for entity hierarchical type information, we consider that entities have multiple representations of different types, as well as treat it as the projection matrix of entities, using the type encoder to model entity hierarchical types. For rule path information, we mine Horn rules from the knowledge graph to guide the synthesis of relations in paths. Experimental results show that TRKRL outperforms baselines on the knowledge graph completion task, which indicates that our model is capable of using entity hierarchical type information, relation paths information, and logic rules information for representation learning.


2021 ◽  
Vol 112 ◽  
pp. 107788
Author(s):  
Wei Dong ◽  
Junsheng Wu ◽  
Zongwen Bai ◽  
Yaoqi Hu ◽  
Weigang Li ◽  
...  

2018 ◽  
Vol 81 ◽  
pp. 71-80 ◽  
Author(s):  
Weiwei Shi ◽  
Yihong Gong ◽  
De Cheng ◽  
Xiaoyu Tao ◽  
Nanning Zheng

Author(s):  
Peilian Zhao ◽  
Cunli Mao ◽  
Zhengtao Yu

Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the legal field. Therefore, in this paper, we study the problem of limitation of labeled training data required and ignorance of in-domain knowledge representation for End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) in legal field. We proposed a new method under deep learning framework, named Semi-ETEKGs, which applied E2E framework using knowledge graph (KG) embedding in legal field after data augmentation (DA). Specifically, we pre-trained the BERT embedding and in-domain KG embedding for unlabeled data and labeled data with case elements after DA, and then we put two embeddings into the E2E framework to classify the polarity of target-entity. Finally, we built a case-related dataset based on a popular benchmark for ABSA to prove the efficiency of Semi-ETEKGs, and experiments on case-related dataset from microblog comments show that our proposed model outperforms the other compared methods significantly.


Author(s):  
Xiawu Zheng ◽  
Rongrong Ji ◽  
Xiaoshuai Sun ◽  
Yongjian Wu ◽  
Feiyue Huang ◽  
...  

Fine-grained object retrieval has attracted extensive research focus recently. Its state-of-the-art schemesare typically based upon convolutional neural network (CNN) features. Despite the extensive progress, two issues remain open. On one hand, the deep features are coarsely extracted at image level rather than precisely at object level, which are interrupted by background clutters. On the other hand, training CNN features with a standard triplet loss is time consuming and incapable to learn discriminative features. In this paper, we present a novel fine-grained object retrieval scheme that conquers these issues in a unified framework. Firstly, we introduce a novel centralized ranking loss (CRL), which achieves a very efficient (1,000times training speedup comparing to the triplet loss) and discriminative feature learning by a ?centralized? global pooling. Secondly, a weakly supervised attractive feature extraction is proposed, which segments object contours with top-down saliency. Consequently, the contours are integrated into the CNN response map to precisely extract features ?within? the target object. Interestingly, we have discovered that the combination of CRL and weakly supervised learning can reinforce each other. We evaluate the performance ofthe proposed scheme on widely-used benchmarks including CUB200-2011 and CARS196. We havereported significant gains over the state-of-the-art schemes, e.g., 5.4% over SCDA [Wei et al., 2017]on CARS196, and 3.7% on CUB200-2011.  


Sign in / Sign up

Export Citation Format

Share Document