scholarly journals Adaptive-Weighted Multiview Deep Basis Matrix Factorization for Multimedia Data Analysis

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shicheng Li ◽  
Qinghua Liu ◽  
Jiangyan Dai ◽  
Wenle Wang ◽  
Xiaolin Gui ◽  
...  

Feature representation learning is a key issue in artificial intelligence research. Multiview multimedia data can provide rich information, which makes feature representation become one of the current research hotspots in data analysis. Recently, a large number of multiview data feature representation methods have been proposed, among which matrix factorization shows the excellent performance. Therefore, we propose an adaptive-weighted multiview deep basis matrix factorization (AMDBMF) method that integrates matrix factorization, deep learning, and view fusion together. Specifically, we first perform deep basis matrix factorization on data of each view. Then, all views are integrated to complete the procedure of multiview feature learning. Finally, we propose an adaptive weighting strategy to fuse the low-dimensional features of each view so that a unified feature representation can be obtained for multiview multimedia data. We also design an iterative update algorithm to optimize the objective function and justify the convergence of the optimization algorithm through numerical experiments. We conducted clustering experiments on five multiview multimedia datasets and compare the proposed method with several excellent current methods. The experimental results demonstrate that the clustering performance of the proposed method is better than those of the other comparison methods.

Author(s):  
Yuhan Wang ◽  
Weidong Xiao ◽  
Zhen Tan ◽  
Xiang Zhao

AbstractKnowledge graphs are typical multi-relational structures, which is consisted of many entities and relations. Nonetheless, existing knowledge graphs are still sparse and far from being complete. To refine the knowledge graphs, representation learning is utilized to embed entities and relations into low-dimensional spaces. Many existing knowledge graphs embedding models focus on learning latent features in close-world assumption but omit the changeable of each knowledge graph.In this paper, we propose a knowledge graph representation learning model, called Caps-OWKG, which leverages the capsule network to capture the both known and unknown triplets features in open-world knowledge graph. It combines the descriptive text and knowledge graph to get descriptive embedding and structural embedding, simultaneously. Then, the both above embeddings are used to calculate the probability of triplet authenticity. We verify the performance of Caps-OWKG on link prediction task with two common datasets FB15k-237-OWE and DBPedia50k. The experimental results are better than other baselines, and achieve the state-of-the-art performance.


Author(s):  
Jinglin Xu ◽  
Junwei Han ◽  
Feiping Nie

More and more multi-view data which can capture rich information from heterogeneous features are widely used in real world applications. How to integrate different types of features, and how to learn low dimensional and discriminative information from high dimensional data are two main challenges. To address these challenges, this paper proposes a novel multi-view feature learning framework, which is regularized by discriminative information and obtains a feature learning model that contains multiple discriminative feature weighting matrices for different views, and then yields multiple low dimensional features used for subsequent multi-view clustering. To optimize the formulated objective function, we transform the proposed framework into a trace optimization problem which obtains the global solution in a closed form. Experimental evaluations on four widely used datasets and comparisons with a number of state-of-the-art multi-view clustering algorithms demonstrate the superiority of the proposed work.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuanyuan Ma ◽  
Lifang Liu ◽  
Qianjun Chen ◽  
Yingjun Ma

Metabolites are closely related to human disease. The interaction between metabolites and drugs has drawn increasing attention in the field of pharmacomicrobiomics. However, only a small portion of the drug-metabolite interactions were experimentally observed due to the fact that experimental validation is labor-intensive, costly, and time-consuming. Although a few computational approaches have been proposed to predict latent associations for various bipartite networks, such as miRNA-disease, drug-target interaction networks, and so on, to our best knowledge the associations between drugs and metabolites have not been reported on a large scale. In this study, we propose a novel algorithm, namely inductive logistic matrix factorization (ILMF) to predict the latent associations between drugs and metabolites. Specifically, the proposed ILMF integrates drug–drug interaction, metabolite–metabolite interaction, and drug-metabolite interaction into this framework, to model the probability that a drug would interact with a metabolite. Moreover, we exploit inductive matrix completion to guide the learning of projection matrices U and V that depend on the low-dimensional feature representation matrices of drugs and metabolites: Fm and Fd. These two matrices can be obtained by fusing multiple data sources. Thus, FdU and FmV can be viewed as drug-specific and metabolite-specific latent representations, different from classical LMF. Furthermore, we utilize the Vicus spectral matrix that reveals the refined local geometrical structure inherent in the original data to encode the relationships between drugs and metabolites. Extensive experiments are conducted on a manually curated “DrugMetaboliteAtlas” dataset. The experimental results show that ILMF can achieve competitive performance compared with other state-of-the-art approaches, which demonstrates its effectiveness in predicting potential drug-metabolite associations.


2010 ◽  
pp. 353-370 ◽  
Author(s):  
Wenwu Wang

Non-negative matrix factorization (NMF) is an emerging technique for data analysis and machine learning, which aims to find low-rank representations for non-negative data. Early works in NMF are mainly based on the instantaneous model, i.e. using a single basis matrix to represent the data. Recent works have shown that the instantaneous model may not be satisfactory for many audio application tasks. The convolutive NMF model, which has an advantage of revealing the temporal structure possessed by many signals, has been proposed. This chapter intends to provide a brief overview of the models and algorithms for both the instantaneous and the convolutive NMF, with a focus on the theoretical analysis and performance evaluation of the convolutive NMF algorithms, and their applications to audio pattern separation problems.


Author(s):  
Chun-Hsiang Wang ◽  
Kang-Chun Fan ◽  
Chuan-Ju Wang ◽  
Ming-Feng Tsai

Customer reviews on platforms such as TripAdvisor and Amazon provide rich information about the ways that people convey sentiment on certain domains. Given these kinds of user reviews, this paper proposes UGSD, a representation learning framework for constructing domain-specific sentiment dictionaries from online customer reviews, in which we leverage the relationship between user-generated reviews and the ratings of the reviews to associate the reviewer sentiment with certain entities. The proposed framework has the following three main advantages. First, no additional annotations of words or external dictionaries are needed for the proposed framework; the only resources needed are the review texts and entity ratings. Second, the framework is applicable across a variety of user-generated content from different domains to construct domain-specific sentiment dictionaries. Finally, each word in the constructed dictionary is associated with a low-dimensional dense representation and a degree of relatedness to a certain rating, which enable us to obtain more fine-grained dictionaries and enhance the application scalability of the constructed dictionaries as the word representations can be adopted for various tasks or applications, such as entity ranking and dictionary expansion. The experimental results on three real-world datasets show that the framework is effective in constructing high-quality domain-specific sentiment dictionaries from customer reviews.


Author(s):  
Jiajie Peng ◽  
Hansheng Xue ◽  
Zhongyu Wei ◽  
Idil Tuncali ◽  
Jianye Hao ◽  
...  

Abstract Motivation The emergence of abundant biological networks, which benefit from the development of advanced high-throughput techniques, contributes to describing and modeling complex internal interactions among biological entities such as genes and proteins. Multiple networks provide rich information for inferring the function of genes or proteins. To extract functional patterns of genes based on multiple heterogeneous networks, network embedding-based methods, aiming to capture non-linear and low-dimensional feature representation based on network biology, have recently achieved remarkable performance in gene function prediction. However, existing methods do not consider the shared information among different networks during the feature learning process. Results Taking the correlation among the networks into account, we design a novel semi-supervised autoencoder method to integrate multiple networks and generate a low-dimensional feature representation. Then we utilize a convolutional neural network based on the integrated feature embedding to annotate unlabeled gene functions. We test our method on both yeast and human datasets and compare with three state-of-the-art methods. The results demonstrate the superior performance of our method. We not only provide a comprehensive analysis of the performance of the newly proposed algorithm but also provide a tool for extracting features of genes based on multiple networks, which can be used in the downstream machine learning task. Availability DeepMNE-CNN is freely available at https://github.com/xuehansheng/DeepMNE-CNN Contact [email protected]; [email protected]; [email protected]


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1978
Author(s):  
Yanying Mao ◽  
Honghui Chen

The representation learning of the knowledge graph projects the entities and relationships in the triples into a low-dimensional continuous vector space. Early representation learning mostly focused on the information contained in the triplet itself but ignored other useful information. Since entities have different types of representations in different scenarios, the rich information in the types of entity levels is helpful for obtaining a more complete knowledge representation. In this paper, a new knowledge representation frame (TRKRL) combining rule path information and entity hierarchical type information is proposed to exploit interpretability of logical rules and the advantages of entity hierarchical types. Specifically, for entity hierarchical type information, we consider that entities have multiple representations of different types, as well as treat it as the projection matrix of entities, using the type encoder to model entity hierarchical types. For rule path information, we mine Horn rules from the knowledge graph to guide the synthesis of relations in paths. Experimental results show that TRKRL outperforms baselines on the knowledge graph completion task, which indicates that our model is capable of using entity hierarchical type information, relation paths information, and logic rules information for representation learning.


2019 ◽  
Author(s):  
Hansheng Xue ◽  
Jiajie Peng ◽  
Xuequn Shang

AbstractMotivationThe emerging of abundant biological networks, which benefit from the development of advanced high-throughput techniques, contribute to describing and modeling complex internal interactions among biological entities such as genes and proteins. Multiple networks provide rich information for inferring the function of genes or proteins. To extract functional patterns of genes based on multiple heterogeneous networks, network embedding-based methods, aiming to capture non-linear and low-dimensional feature representation based on network biology, have recently achieved remarkable performance in gene function prediction. However, existing methods mainly do not consider the shared information among different networks during the feature learning process. Thus, we propose a novel multi-networks embedding-based function prediction method based on semi-supervised autoencoder and feature convolution neural network, named DeepMNE-CNN, which captures complex topological structures of multi-networks and takes the correlation among multi-networks into account.ResultsWe design a novel semi-supervised autoencoder method to integrate multiple networks and generate a low-dimensional feature representation. Then we utilize a convolutional neural network based on the integrated feature embedding to annotate unlabeled gene functions. We test our method on both yeast and human dataset and compare with four state-of-the-art methods. The results demonstrate the superior performance of our method over four state-of-the-art algorithms. From the future explorations, we find that semi-supervised autoencoder based multi-networks integration method and CNN-based feature learning methods both contribute to the task of function prediction.AvailabilityDeepMNE-CNN is freely available at https://github.com/xuehansheng/DeepMNE-CNN


Author(s):  
Tianshui Chen ◽  
Liang Lin ◽  
Riquan Chen ◽  
Yang Wu ◽  
Xiaonan Luo

Humans can naturally understand an image in depth with the aid of rich knowledge accumulated from daily lives or professions. For example, to achieve fine-grained image recognition (e.g., categorizing hundreds of subordinate categories of birds) usually requires a comprehensive visual concept organization including category labels and part-level attributes. In this work, we investigate how to unify rich professional knowledge with deep neural network architectures and propose a Knowledge-Embedded Representation Learning (KERL) framework for handling the problem of fine-grained image recognition. Specifically, we organize the rich visual concepts in the form of knowledge graph and employ a Gated Graph Neural Network to propagate node message through the graph for generating the knowledge representation. By introducing a novel gated mechanism, our KERL framework incorporates this knowledge representation into the discriminative image feature learning, i.e., implicitly associating the specific attributes with the feature maps. Compared with existing methods of fine-grained image classification, our KERL framework has several appealing properties: i) The embedded high-level knowledge enhances the feature representation, thus facilitating distinguishing the subtle differences among subordinate categories. ii) Our framework can learn feature maps with a meaningful configuration that the highlighted regions finely accord with the nodes (specific attributes) of the knowledge graph. Extensive experiments on the widely used Caltech-UCSD bird dataset demonstrate the superiority of our KERL framework over existing state-of-the-art methods.


2021 ◽  
Vol 11 (7) ◽  
pp. 3248
Author(s):  
Bardia Yousefi ◽  
Hamed Akbari ◽  
Michelle Hershman ◽  
Satoru Kawakita ◽  
Henrique C. Fernandes ◽  
...  

Early diagnosis of breast cancer unequivocally improves the survival rate of patients and is crucial for disease treatment. With the current developments in infrared imaging, breast screening using dynamic thermography seems to be a great complementary method for clinical breast examination (CBE) prior to mammography. In this study, we propose a sparse deep convolutional autoencoder model named SPAER to extract low-dimensional deep thermomics to aid breast cancer diagnosis. The model receives multichannel, low-rank, approximated thermal bases as input images. SPAER provides a solution for high-dimensional deep learning features and selects the predominant basis matrix using matrix factorization techniques. The model has been evaluated using five state-of-the-art matrix factorization methods and 208 thermal breast cancer screening cases. The best accuracy was for non-negative matrix factorization (NMF)-SPAER + Clinical and NMF-SPAER for maintaining thermal heterogeneity, leading to finding symptomatic cases with accuracies of 78.2% (74.3–82.5%) and 77.7% (70.9–82.1%), respectively. SPAER showed significant robustness when tested for additive Gaussian noise cases (3–20% noise), evaluated by the signal-to-noise ratio (SNR). The results suggest high performance of SPAER for preserveing thermal heterogeneity, and it can be used as a noninvasive in vivo tool aiding CBE in the early detection of breast cancer.


Sign in / Sign up

Export Citation Format

Share Document