scholarly journals A Probabilistic Logic for Resource-Bounded Multi-Agent Systems

Author(s):  
Hoang Nga Nguyen ◽  
Abdur Rakib

Resource-bounded alternating-time temporal logic (RB-ATL), an extension of Coalition Logic (CL) and Alternating-time Temporal Logic (ATL), allows reasoning about resource requirements of coalitions in concurrent systems. However, many real-world systems are inherently probabilistic as well as resource-bounded, and there is no straightforward way of reasoning about their unpredictable behaviours. In this paper, we propose a logic for reasoning about coalitional power under resource constraints in the probabilistic setting. We extend RB-ATL with probabilistic reasoning and provide a standard algorithm for the model-checking problem of the resulting logic Probabilistic Resource-Bounded ATL (pRB-ATL).

Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3052
Author(s):  
Liping Xiong ◽  
Sumei Guo

Specification and verification of coalitional strategic abilities have been an active research area in multi-agent systems, artificial intelligence, and game theory. Recently, many strategic logics, e.g., Strategy Logic (SL) and alternating-time temporal logic (ATL*), have been proposed based on classical temporal logics, e.g., linear-time temporal logic (LTL) and computational tree logic (CTL*), respectively. However, these logics cannot express general ω-regular properties, the need for which are considered compelling from practical applications, especially in industry. To remedy this problem, in this paper, based on linear dynamic logic (LDL), proposed by Moshe Y. Vardi, we propose LDL-based Strategy Logic (LDL-SL). Interpreted on concurrent game structures, LDL-SL extends SL, which contains existential/universal quantification operators about regular expressions. Here we adopt a branching-time version. This logic can express general ω-regular properties and describe more programmed constraints about individual/group strategies. Then we study three types of fragments (i.e., one-goal, ATL-like, star-free) of LDL-SL. Furthermore, we show that prevalent strategic logics based on LTL/CTL*, such as SL/ATL*, are exactly equivalent with those corresponding star-free strategic logics, where only star-free regular expressions are considered. Moreover, results show that reasoning complexity about the model-checking problems for these new logics, including one-goal and ATL-like fragments, is not harder than those of corresponding SL or ATL*.


Author(s):  
Anet Potgieter ◽  
Judith Bishop

Most agent architectures implement autonomous agents that use extensive interaction protocols and social laws to control interactions in order to ensure that the correct behaviors result during run-time. These agents, organized into multi-agent systems in which all agents adhere to predefined interaction protocols, are well suited to the analysis, design and implementation of complex systems in environments where it is possible to predict interactions during the analysis and design phases. In these multi-agent systems, intelligence resides in individual autonomous agents, rather than in the collective behavior of the individual agents. These agents are commonly referred to as “next-generation” or intelligent components, which are difficult to implement using current component-based architectures. In most distributed environments, such as the Internet, it is not possible to predict interactions during analysis and design. For a complex system to be able to adapt in such an uncertain and non-deterministic environment, we propose the use of agencies, consisting of simple agents, which use probabilistic reasoning to adapt to their environment. Our agents collectively implement distributed Bayesian networks, used by the agencies to control behaviors in response to environmental states. Each agency is responsible for one or more behaviors, and the agencies are structured into heterarchies according to the topology of the underlying Bayesian networks. We refer to our agents and agencies as “Bayesian agents” and “Bayesian agencies.”


2021 ◽  
Author(s):  
Michał Kański ◽  
Artur Niewiadomski ◽  
Magdalena Kacprzak ◽  
Wojciech Penczek ◽  
Wojciech Nabiałek

In this paper, we deal with verification of multi-agent systems represented as concurrent game structures. To express properties to be verified, we use Alternating-Time Temporal Logic (ATL) formulas. We provide an implementation of symbolic model checking for ATL and preliminary, but encouraging experimental results.


Author(s):  
Jakub Michaliszyn ◽  
Piotr Witkowski

Epistemic Halpern-Shoham logic (EHS) is an interval temporal logic defined to verify properties of Multi-Agent Systems. In this paper we show that the model checking Multi-Agent Systems with regular expressions against the EHS specifications is decidable. We achieve this by reducing the model checking problem to the satisfiability problem of Monadic Second-Order Logic on trees.


Author(s):  
Alessandro Abate ◽  
Julian Gutierrez ◽  
Lewis Hammond ◽  
Paul Harrenstein ◽  
Marta Kwiatkowska ◽  
...  

AbstractWe provide a survey of the state of the art of rational verification: the problem of checking whether a given temporal logic formula ϕ is satisfied in some or all game-theoretic equilibria of a multi-agent system – that is, whether the system will exhibit the behavior ϕ represents under the assumption that agents within the system act rationally in pursuit of their preferences. After motivating and introducing the overall framework of rational verification, we discuss key results obtained in the past few years as well as relevant related work in logic, AI, and computer science.


Sign in / Sign up

Export Citation Format

Share Document