scholarly journals Identifying Norms from Observation Using MCMC Sampling

Author(s):  
Stephen Cranefield ◽  
Ashish Dhiman

To promote efficient interactions in dynamic and multi-agent systems, there is much interest in techniques that allow agents to represent and reason about social norms that govern agent interactions. Much of this work assumes that norms are provided to agents, but some work has investigated how agents can identify the norms present in a society through observation and experience. However, the norm-identification techniques proposed in the literature often depend on a very specific and domain-specific representation of norms, or require that the possible norms can be enumerated in advance. This paper investigates the problem of identifying norm candidates from a normative language expressed as a probabilistic context-free grammar, using Markov Chain Monte Carlo (MCMC) search. We apply our technique to a simulated robot manipulator task and show that it allows effective identification of norms from observation.

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Witold Dyrka ◽  
Marlena Gąsior-Głogowska ◽  
Monika Szefczyk ◽  
Natalia Szulc

Abstract Background Amyloid signaling motifs are a class of protein motifs which share basic structural and functional features despite the lack of clear sequence homology. They are hard to detect in large sequence databases either with the alignment-based profile methods (due to short length and diversity) or with generic amyloid- and prion-finding tools (due to insufficient discriminative power). We propose to address the challenge with a machine learning grammatical model capable of generalizing over diverse collections of unaligned yet related motifs. Results First, we introduce and test improvements to our probabilistic context-free grammar framework for protein sequences that allow for inferring more sophisticated models achieving high sensitivity at low false positive rates. Then, we infer universal grammars for a collection of recently identified bacterial amyloid signaling motifs and demonstrate that the method is capable of generalizing by successfully searching for related motifs in fungi. The results are compared to available alternative methods. Finally, we conduct spectroscopy and staining analyses of selected peptides to verify their structural and functional relationship. Conclusions While the profile HMMs remain the method of choice for modeling homologous sets of sequences, PCFGs seem more suitable for building meta-family descriptors and extrapolating beyond the seed sample.


2013 ◽  
Vol 39 (1) ◽  
pp. 57-85 ◽  
Author(s):  
Alexander Fraser ◽  
Helmut Schmid ◽  
Richárd Farkas ◽  
Renjing Wang ◽  
Hinrich Schütze

We study constituent parsing of German, a morphologically rich and less-configurational language. We use a probabilistic context-free grammar treebank grammar that has been adapted to the morphologically rich properties of German by markovization and special features added to its productions. We evaluate the impact of adding lexical knowledge. Then we examine both monolingual and bilingual approaches to parse reranking. Our reranking parser is the new state of the art in constituency parsing of the TIGER Treebank. We perform an analysis, concluding with lessons learned, which apply to parsing other morphologically rich and less-configurational languages.


Author(s):  
Domenico Camarda

The new complexity of planning knowledge implies innovation of planning methods, in both substance and procedure. The development of multi-agent cognitive processes, particularly when the agents are diverse and dynamically associated to their interaction arenas, may have manifold implications. In particular, interesting aspects are scale problems of distributed interaction, continuous feedback on problem setting, language and representation (formal, informal, hybrid, etc.) differences among agents (Bousquet, Le Page, 2004). In this concern, an increasing number of experiences on multi-agent interactions are today located within the processes of spatial and environmental planning. Yet, the upcoming presence of different human agents often acting au paire with artificial agents in a social physical environment (see, e.g., with sensors or data-mining routines) often suggests the use of hybrid MAS-based approaches (Al-Kodmany, 2002; Ron, 2005). In this framework, the chapter will scan experiences on the setting up of cooperative multi-agent systems, in order to investigate the potentials of that approach on the interaction of agents in planning processes, beyond participatory planning as such. This investigation will reflect on agent roles, behaviours, actions in planning processes themselves. Also, an attempt will be carried out to put down formal representation of supporting architectures for interaction and decision making.


2012 ◽  
pp. 211-218 ◽  
Author(s):  
Agostino Poggi ◽  
Michele Tomaiuolo

Expert systems are successfully applied to a number of domains. Often built on generic rule-based systems, they can also exploit optimized algorithms. On the other side, being based on loosely coupled components and peer to peer infrastructures for asynchronous messaging, multi-agent systems allow code mobility, adaptability, easy of deployment and reconfiguration, thus fitting distributed and dynamic environments. Also, they have good support for domain specific ontologies, an important feature when modelling human experts’ knowledge. The possibility of obtaining the best features of both technologies is concretely demonstrated by the integration of JBoss Rules, a rule engine efficiently implementing the Rete-OO algorithm, into JADE, a FIPA-compliant multi-agent system.


Author(s):  
NAJLA AHMAD ◽  
ARVIN AGAH

In a multi-agent system, an agent may utilize its idle time to assist other agents in the system. Intent recognition is proposed to accomplish this with minimal communication. An agent performing recognition observes the tasks other agents are performing and, unlike the much studied field of plan recognition, the overall intent of an agent is recognized instead of a specific plan. The observing agent may use capabilities that it has not observed. A conceptual framework is proposed for intent recognition systems. An implementation of the conceptual framework is tested and evaluated. We hypothesize that using intent recognition in a multi-agent system increases utility (where utility is domain specific) and decreases the amount of communication. We test our hypotheses using the domain of Cow Herding, where agents attempt to herd cow agents into team corrals. A set of metrics, including task time and number of communications, is used to compare the performance of plan recognition and intent recognition. In our results, we find that intent recognition agents communicate fewer times than plan recognition agents. In addition, unlike plan recognition, when agents use the novel approach of intent recognition, they select unobserved actions to perform. Intent recognition agents were also able to outperform plan recognition agents by consistently scoring more points in the Cow Herding domain. This research shows that under certain conditions, an intent recognition system is more efficient than a plan recognition system. The advantage of intent recognition over plan recognition becomes more apparent in complex domains.


Sign in / Sign up

Export Citation Format

Share Document