scholarly journals Knowledge Consolidation based Class Incremental Online Learning with Limited Data

Author(s):  
Mohammed Asad Karim ◽  
Vinay Kumar Verma ◽  
Pravendra Singh ◽  
Vinay Namboodiri ◽  
Piyush Rai

We propose a novel approach for class incremental online learning in a limited data setting. This problem setting is challenging because of the following constraints: (1) Classes are given incrementally, which necessitates a class incremental learning approach; (2) Data for each class is given in an online fashion, i.e., each training example is seen only once during training; (3) Each class has very few training examples; and (4) We do not use or assume access to any replay/memory to store data from previous classes. Therefore, in this setting, we have to handle twofold problems of catastrophic forgetting and overfitting. In our approach, we learn robust representations that are generalizable across tasks without suffering from the problems of catastrophic forgetting and overfitting to accommodate future classes with limited samples. Our proposed method leverages the meta-learning framework with knowledge consolidation. The meta-learning framework helps the model for rapid learning when samples appear in an online fashion. Simultaneously, knowledge consolidation helps to learn a robust representation against forgetting under online updates to facilitate future learning. Our approach significantly outperforms other methods on several benchmarks.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Samar Ali Shilbayeh ◽  
Sunil Vadera

Purpose This paper aims to describe the use of a meta-learning framework for recommending cost-sensitive classification methods with the aim of answering an important question that arises in machine learning, namely, “Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?” Design/methodology/approach This paper describes the use of a meta-learning framework for recommending cost-sensitive classification methods for the aim of answering an important question that arises in machine learning, namely, “Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?” The framework is based on the idea of applying machine learning techniques to discover knowledge about the performance of different machine learning algorithms. It includes components that repeatedly apply different classification methods on data sets and measures their performance. The characteristics of the data sets, combined with the algorithms and the performance provide the training examples. A decision tree algorithm is applied to the training examples to induce the knowledge, which can then be used to recommend algorithms for new data sets. The paper makes a contribution to both meta-learning and cost-sensitive machine learning approaches. Those both fields are not new, however, building a recommender that recommends the optimal case-sensitive approach for a given data problem is the contribution. The proposed solution is implemented in WEKA and evaluated by applying it on different data sets and comparing the results with existing studies available in the literature. The results show that a developed meta-learning solution produces better results than METAL, a well-known meta-learning system. The developed solution takes the misclassification cost into consideration during the learning process, which is not available in the compared project. Findings The proposed solution is implemented in WEKA and evaluated by applying it to different data sets and comparing the results with existing studies available in the literature. The results show that a developed meta-learning solution produces better results than METAL, a well-known meta-learning system. Originality/value The paper presents a major piece of new information in writing for the first time. Meta-learning work has been done before but this paper presents a new meta-learning framework that is costs sensitive.


Author(s):  
Yiyue Qian ◽  
Yiming Zhang ◽  
Yanfang Ye ◽  
Chuxu Zhang

As cyberattacks caused by malware have proliferated during the pandemic, building an automatic system to detect COVID-19 themed malware in social coding platforms is in urgent need. The existing methods mainly rely on file content analysis while ignoring structured information among entities in social coding platforms. Additionally, they usually require sufficient data for model training, impairing their performances over cases with limited data which is common in reality. To address these challenges, we develop Meta-AHIN, a novel model for COVID-19 themed malicious repository detection in GitHub. In Meta-AHIN, we first construct an attributed heterogeneous information network (AHIN) to model the code content and social coding properties in GitHub; and then we exploit attention-based graph convolutional neural network (AGCN) to learn repository embeddings and present a meta-learning framework for model optimization. To utilize unlabeled information in AHIN and to consider task influence of different types of repositories, we further incorporate node attribute-based self-supervised module and task-aware attention weight into AGCN and meta-learning respectively. Extensive experiments on the collected data from GitHub demonstrate that Meta-AHIN outperforms state-of-the-art methods.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.


2021 ◽  
Vol 25 (3) ◽  
pp. 711-738
Author(s):  
Phu Pham ◽  
Phuc Do

Link prediction on heterogeneous information network (HIN) is considered as a challenge problem due to the complexity and diversity in types of nodes and links. Currently, there are remained challenges of meta-path-based link prediction in HIN. Previous works of link prediction in HIN via network embedding approach are mainly focused on exploiting features of node rather than existing relations in forms of meta-paths between nodes. In fact, predicting the existence of new links between non-linked nodes is absolutely inconvincible. Moreover, recent HIN-based embedding models also lack of thorough evaluations on the topic similarity between text-based nodes along given meta-paths. To tackle these challenges, in this paper, we proposed a novel approach of topic-driven multiple meta-path-based HIN representation learning framework, namely W-MMP2Vec. Our model leverages the quality of node representations by combining multiple meta-paths as well as calculating the topic similarity weight for each meta-path during the processes of network embedding learning in content-based HINs. To validate our approach, we apply W-TMP2Vec model in solving several link prediction tasks in both content-based and non-content-based HINs (DBLP, IMDB and BlogCatalog). The experimental outputs demonstrate the effectiveness of proposed model which outperforms recent state-of-the-art HIN representation learning models.


SAGE Open ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 215824402097983
Author(s):  
Abdullah Yasin Gündüz ◽  
Buket Akkoyunlu

The success of the flipped learning approach is directly related to the preparation process through the online learning environment. It is clear that the desired level of academic achievement cannot be reached if the students come to class without completing their assignments. In this study, we investigated the effect of the use of gamification in the online environment of flipped learning to determine whether it will increase interaction data, participation, and achievement. We used a mixed-methods sequential explanatory design, which implies collecting and analyzing quantitative and then qualitative data. In the online learning environment of the experimental group, we used the gamification. However, participants in the control group could not access the game components. According to the findings, the experimental group had higher scores in terms of interaction data, participation, and achievement compared with the control group. Students with low participation can be encouraged to do online activities with gamification techniques.


2021 ◽  
pp. 1-1
Author(s):  
Qi Liu ◽  
Xinyu Zhang ◽  
Yongxiang Liu ◽  
Kai Huo ◽  
Weidong Jiang ◽  
...  

Synlett ◽  
2020 ◽  
Author(s):  
Akira Yada ◽  
Kazuhiko Sato ◽  
Tarojiro Matsumura ◽  
Yasunobu Ando ◽  
Kenji Nagata ◽  
...  

AbstractThe prediction of the initial reaction rate in the tungsten-catalyzed epoxidation of alkenes by using a machine learning approach is demonstrated. The ensemble learning framework used in this study consists of random sampling with replacement from the training dataset, the construction of several predictive models (weak learners), and the combination of their outputs. This approach enables us to obtain a reasonable prediction model that avoids the problem of overfitting, even when analyzing a small dataset.


2021 ◽  
pp. 1-1
Author(s):  
Ning Yang ◽  
Bangning Zhang ◽  
Guoru Ding ◽  
Yimin Wei ◽  
Guofeng Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document