scholarly journals Orientation Dependence of Plastic Deformation Behavior and Fracture Energy Absorption Mechanism around Vickers Indentation of Textured Ti3SiC2 Sintered Body

2020 ◽  
Vol 67 (11) ◽  
pp. 607-614
Author(s):  
Yuji SHIRAKAMI ◽  
Ken-ichi IKEDA ◽  
Seiji MIURA ◽  
Koji MORITA ◽  
Tohru S. SUZUKI ◽  
...  
2002 ◽  
Vol 753 ◽  
Author(s):  
Takayoshi Nakano ◽  
Koutaro Hayashi ◽  
Yosuke Nagasawa ◽  
Yukichi Umakoshi

ABSTRACTAl5Ti3 single-phase single crystals with the stoichiometric composition of Ti-62.5at.%Al were obtained by the floating zone method and subsequent heat treatment at 750°C for 48h. The crystals contain no L10 phase, but compose of anti-phase domains (APD) surrounded by the anti-phase boundary (APB) on the basis of the Al5Ti3 long-period superstructure.Orientation dependence of plastic deformation behavior and operative slip system were examined in compression in a wide temperature range between RT and 750°C using the single-phase single crystals in comparison with Al-rich TiAl single crystals with the L10 matrix and Al5Ti3 precipitates. In the wide crystal orientation area, {111)<110] ordinary slip appeared independent of the tested temperature, while {111)<101] superlattice slip was operative only at around [001] and [110] axes. This is because the critical resolved shear stress (CRSS) for the ordinary slip is lower than that for the superlattice slip and that for the ordinary slip in other Al-rich TiAl crystals containing L10. This implies that existence of the L10 matrix with the Al5Ti3 phase must be closely related to strengthening for the ordinary slip, similarity in Ni-base super-alloys consisting of the Ni-based matrix and L12 precipitates. The CRSS for both slips gradually decreased or was kept constant with temperature, showing no remarkable anomalous strengthening.In this paper, deformation mechanism in Al5Ti3 single-phase single crystals will be discussed focusing on condition of the Al5Ti3 superstructure.


2015 ◽  
Vol 830-831 ◽  
pp. 337-340
Author(s):  
Ashish Kumar Saxena ◽  
Manikanta Anupoju ◽  
Asim Tewari ◽  
Prita Pant

An understanding of the plastic deformation behavior of Ti6Al4V (Ti64) is of great interest because it is used in aerospace applications due to its high specific strength. In addition, Ti alloys have limited slip systems due to hexagonal crystal structure; hence twinning plays an important role in plastic deformation. The present work focuses upon the grain size effect on plastic deformation behaviour of Ti64. Various microstructures with different grain size were developed via annealing of Ti64 alloy in α-β phase regime (825°C and 850°C) for 4 hours followed by air cooling. The deformation behavior of these samples was investigated at various deformation temperature and strain rate conditions. Detailed microstructure studies showed that (i) smaller grains undergoes twinning only at low temperature and high strain rate, (ii) large grain samples undergo twinning at all temperatures & strain rates, though the extent of twinning varied.


1975 ◽  
Vol 18 (125) ◽  
pp. 1209-1217 ◽  
Author(s):  
Kenji KANEKO ◽  
Kozo IKEGAMI ◽  
Eiryo SHIRATORI

2015 ◽  
Vol 651-653 ◽  
pp. 570-574 ◽  
Author(s):  
Akinori Yamanaka

The plastic deformation behavior of dual-phase (DP) steel is strongly affected by its underlying three-dimensional (3D) microstructural factors such as spatial distribution and morphology of ferrite and martensite phases. In this paper, we present a coupled simulation method by the multi-phase-field (MPF) model and the crystal plasticity fast Fourier transformation (CPFFT) model to investigate the 3D microstructure-dependent plastic deformation behavior of DP steel. The MPF model is employed to generate a 3D digital image of DP microstructure, which is utilized to create a 3D representative volume element (RVE). Furthermore, the CPFFT simulation of tensile deformation of DP steel is performed using the 3D RVE. Through the simulations, we demonstrate the stress and strain partitioning behaviors in DP steel depending on the 3D morphology of DP microstructure can be investigated consistently.


2007 ◽  
Vol 345-346 ◽  
pp. 177-180 ◽  
Author(s):  
Dyi Cheng Chen ◽  
Yi Ju Li ◽  
Gow Yi Tzou

The shear plastic deformation behavior of a material during equal channel angular (ECA) extrusion is governed primarily by the die geometry, the material properties, and the processing conditions. Using commercial DEFORMTM 2D rigid-plastic finite element code, this study investigates the plastic deformation behavior of Ti-6Al-4V titanium alloy during 1- and 2-turn ECA extrusion processing in dies containing right-angle turns. The simulations investigate the distributions of the billet mesh, effective stress and effective strain under various processing conditions. The respective influences of the channel curvatures in the inner and outer regions of the channel corner are systematically examined. The numerical results provide valuable insights into the shear plastic deformation behavior of Ti-6Al-4V titanium alloy during ECA extrusion.


Sign in / Sign up

Export Citation Format

Share Document