scholarly journals Design and Evaluation of Lovastatin Solid Dispersions Incorporated Trilayer Matrix Tablets

Author(s):  
Chinthala Shanthi Priya ◽  
Tummaluru Ramamohan Reddy

The current work is aimed to design, prepare and evaluate the trilayer matrix tablets incorporated with lovastatin solid dispersion (SD) for extend drug release. The lovastatin SD prepared by using solvent evaporation technique with varying amounts of polymers (GMS II, Soluplus, Kolliphor ELP, PEG 2000 and Urea) for enhancing the drug solubility. All the formulations examined for physicochemical parameters are within the permissible limits. The optimized SD formulation was incorporated into trilayer matrix tablets which were prepared using different polymers (HPMC 15M & K100M, Chitosan, xanthan gum) by direct compression method for sustaining the drug release. The drug dissolution of optimized lovastatin SD formulation SD15 (drug, soluplus and SLN) was 99.88±5.32% within 60 min which is higher than pure drug 47.33±2.25% and other formulations. The FT-IR, XRD and SEM data assure the compatibility of drug and excipients and amorphous nature of lovastatin. The solid dispersions were further incorporated in to trilayer matrix tablets with active layer and barrier layers. Eight formulations of lovastatin trilayer matrix tablets (AF9-HF9) designed and checked for pre compression parameters. Formulation GF9 demonstrated highest drug release of 99.41±5.28% for 24 hours sustainably over an extended period of time and excellent flow properties. The release order kinetics data indicate the zero order release with highest R2 of 0.9957 for GF9, superior than market extended release formulation (R2=0.9934). All the formulations showed best fit to Higuchi model and Korsmeyer-Peppa’s model indicating diffusion and non-Fickian diffusion process of drug release. GF90 was found to be stable for 180 days at accelerated conditions. Hence the solubility, dissolution rate of lovastatin was enhanced by SD technique further incorporated in to trilayer matrix tablets for sustainable extended drug release upto 24 h.

Author(s):  
Nirmala Rangu ◽  
Gande Suresh

The present study was aimed to develop once-daily controlled release trilayer matrix tablets of nelfinavir to achieve zero-order drug release for sustained plasma concentration. Nelfinavir trilayer matrix tablets were prepared by direct compression method and consisted of middle active layer with different grades of hydroxypropyl methylcellulose (HPMC), PVP (Polyvinyl Pyrrolidine) K-30 and MCC (Micro Crystalline Cellulose). Barrier layers were prepared with Polyox WSR-303, Xanthan gum, microcrystalline cellulose and magnesium stearate. Based on the evaluation parameters, drug dissolution profile and release drug kinetics DF8 were found to be optimized formulation. The developed drug delivery system provided prolonged drug release rates over a period of 24 h. The release profile of the optimized formulation (DF8) was described by the zero-order and best fitted to Higuchi model. FT-IR studies confirmed that there were no chemical interactions between drug and excipients used in the formulation. These results indicate that the approach used could lead to a successful development of a controlled release formulation of nelfinavir in the management of AIDS.


Author(s):  
Audinarayana N ◽  
Anala Srinivasulu ◽  
Vellore Sruthikumari ◽  
Likitha ◽  
Ananda Deepak V

The principle in this present research is to formulate Mesalamine containing colon targeted tablets by using different polymers and evaluate the effect of different polymers in drug release pattern. The matrix tablets of Mesalamine are formulated by polysaccharides based polymers like Cellulose acetate phthalate (CAP), Ethyl cellulose (EC), Guar gum (GG) and Xanthan gum (XG) which protects the drug to release in Stomach and Small Intestine. The invitro drug dissolution investigation of F2 (GG and XG) Matrix tablet was controlled by swelling into a viscous gel in colonic pH, which have been accomplished as the best tablet. The optimized tablet F2 was found to be stable in stability study (short term) with reproducible evaluation data, which also shows the highest swelling index, increased viscosity in colonic pH. The drug release pattern from the F2 formulation follows swelling and erosion behavior. From the data it show that F2 tablets suitable for providing colon targeted drug delivery.


Author(s):  
Kranthi Kumar Kotta ◽  
L. Srinivas

The present investigation focuses on the development of mucoadhesive tablets of captopril which are designed to prolong the gastric residence time after oral administration. Matrix tablets of captopril were formulated using four mucoadhesive polymers namely guar gum, xanthan gum, HPMC K4M and HPMC K15M and studied for parameters such as weight variation, thickness, hardness, content uniformity, swelling index, mucoadhesive force and in vitro drug release. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M provide slow release of captopril over period of 12 hr and were found suitable for maintenance portion of oral controlled release tablets. The cumulative % of drug release of formulation F9 and F10 were 90 and 92, respectively. In vitro release from these tablets was diffusion controlled and followed zero order kinetics. The ‘n’ values obtained from the pappas-karsemeyer equation suggested that all the formulation showed drug release by non-fickian diffusion mechanism. Tablets formulated Xanthan gum or HPMC K4M with HPMC K15M (1:1) were established to be the optimum formulation with optimum bioadhesive force, swelling index & desired invitro drug release. This product was further subjected to stability study, the results of which indicated no significant change with respect to Adhesive strength and in vitro drug release study.


2020 ◽  
Vol 15 ◽  
Author(s):  
Balaji Maddiboyina ◽  
Vikas Jhawat ◽  
Gandhi Sivaraman ◽  
Om Prakash Sunnapu ◽  
Ramya Krishna Nakkala ◽  
...  

Background: Venlafaxine HCl is a selective serotonin reuptake inhibitor which is given in the treatment of depression. The delivery of the drug at a controlled rate can be of great importance for prolonged effect. Objective: The objective was to prepare and optimize the controlled release core in cup matrix tablet of venlafaxine HCl using the combination of hydrophilic and hydrophobic polymers to prolong the effect with rate controlled drug release. Methods: The controlled release core in cup matrix tablets of venlafaxine HCl were prepared using HPMC K5, K4, K15, HCO, IPA, aerosol, magnesium sterate, hydrogenated castor oil and micro crystalline cellulose PVOK-900 using wet granulation technique. Total ten formulations with varying concentrations of polymers were prepared and evaluated for different physicochemical parameters such FTIR analysis for drug identification, In-vitro drug dissolution study was performed to evaluate the amount of drug release in 24 hrs, drug release kinetics study was performed to fit the data in zero order, first order, Hixson–crowell and Higuchi equation to determine the mechanism of drug release and stability studies for 3 months as observed. Results: The results of hardness, thickness, weight variation, friability and drug content study were in acceptable range for all formulations. Based on the In vitro dissolution profile, formulation F-9 was considered to be the optimized extending the release of 98.32% of drug up to 24 hrs. The data fitting study showed that the optimized formulation followed the zero order release rate kinetics and also compared with innovator product (flavix XR) showed better drug release profile. Conclusion: The core-in-cup technology has a potential to control the release rate of freely water soluble drugs for single administration per day by optimization with combined use of hydrophilic and hydrophobic polymers.


2009 ◽  
Vol 59 (1) ◽  
pp. 15-30 ◽  
Author(s):  
Pramod Kumar ◽  
Sanjay Singh ◽  
Brahmeshwar Mishra

Development and biopharmaceutical evaluation of extended release formulation of tramadol hydrochloride based on osmotic technologyExtended release formulation of tramadol hydrochloride (TRH) based on osmotic technology was developed and evaluated. Target release profile was selected and different variables were optimized to achieve it. Formulation variables such as the level of swellable polymer, plasticizer and the coat thickness of semipermeable membrane (SPM) were found to markedly affect drug release. TRH release was directly proportional to the levels of plasticizer but inversely proportional to the levels of swellable polymer and coat thickness of SPM. Drug release from developed formulations was independent of pH and agitation intensity but dependent on osmotic pressure of the release media.In vivostudy was also performed on six healthy human volunteers and various pharmacokinetic parameters (cmax,tmax,AUC0-24,MRT) and relative bioavailability were calculated. Thein vitroandin vivoresults were compared with the performance of two commercial TRH tablets. The developed formulation provided more prolonged and controlled TRH release compared to the marketed formulation.In vitro-in vivocorrelation (IVIVC) was analyzed according to the Wagner-Nelson method. The optimized formulation (batch IVB) exhibited good IVIV correlation (R= 0.9750). The manufacturing procedure was found to be reproducible and formulations were stable over 6 months of accelerated stability testing.


INDIAN DRUGS ◽  
2018 ◽  
Vol 55 (11) ◽  
pp. 71-73
Author(s):  
Ch. Taraka Ramarao ◽  
◽  
J Vijaya Ratna ◽  
R. B. Srinivasa

The present investigation involves developing gastro retentive drug delivery systems (GFDDS) of alfuzosin HCl using HPMCK100M a is the matrixing agent and floating enhancer. Sodium bicarbonate in the acidic environment reacts with the acid and produces carbon dioxide. The gastro retentive tablets can be formulated to increase the gastric residence time and thereby increase the oral bioavailability. From the drug release study, it was concluded that the AFTB4 formula of HPMC K 100 M matrix tablets gives the controlled release up to 12 hours by showing increased release with floating lag time 24 seconds. Non – Fickian diffusion was the drug release mechanism from the matrix tablets formulated employing HPMC K 100 M. The matrix tablets (AFTB4) formulated employing 40 % HPMC K 100 M are best suited to be used for gastro retentive dosage form of alfuzosin HCl. Finally, it can be concluded that good candidates for the preparation of gastro retentive dosage forms due its gastric stability, gastric absorption and better bioavailability.


2017 ◽  
Vol 531 (1) ◽  
pp. 306-312 ◽  
Author(s):  
Chan-Jung Li ◽  
Mei-Yun Ku ◽  
Chia-Yin Lu ◽  
Yu-En Tien ◽  
Wendy H. Chern ◽  
...  

2019 ◽  
Vol 9 (2) ◽  
pp. 231-240
Author(s):  
Khosro Adibkia ◽  
Solmaz Ghajar ◽  
Karim Osouli-Bostanabad ◽  
Niloufar Balaei ◽  
Shahram Emami ◽  
...  

Purpose: In the current study, electrospraying was directed as a novel alternative approach to improve the physicochemical attributes of gliclazide (GLC), as a poorly water-soluble drug, by creating nanocrystalline/amorphous solid dispersions (ESSs). Methods: ESSs were formulated using Eudragit® RS100 and polyethylene glycol (PEG) 6000 as polymeric carriers at various drug: polymer ratios (i.e. 1:5 and 1:10) with different total solution concentrations of 10, 15, and 20% w/v. Morphological, physicochemical, and in-vitro release characteristics of the developed formulations were assessed. Furthermore, GLC dissolution behaviors from ESSs were fitted to various models in order to realize the drug release mechanism. Results: Field emission scanning electron microscopy analyses revealed that the size and morphology of the ESSs were affected by the drug: polymer ratios and solution concentrations. The polymer ratio augmentation led to increase in the particle size while the solution concentration enhancement yielded in a fiber establishment. Differential scanning calorimetry and powder X-ray diffraction investigations demonstrated that the ESSs were present in an amorphous state. Furthermore, the in vitro drug release studies depicted that the samples prepared employing PEG 6000 as carrier enhanced the dissolution rate and the model that appropriately fitted the release behavior of ESSs was Weibull model, where demonstrating a Fickian diffusion as the leading release mechanism. Fourier-transform infrared spectroscopy results showed a probability of complexation or hydrogen bonding, development between GLC and the polymers in the solid state. Conclusion: Hence the electrospraying system avails the both nanosizing and amorphization advantages, therefore, it can be efficiently applied to formulating of ESSs of BCS Class II drugs.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (10) ◽  
pp. 38-43
Author(s):  
Ch. Taraka Ramarao ◽  
◽  
B. Srinivasa Rao ◽  
J. Vijayaratana

Matrix Tablets, each containing 50 mg of diclofenac sodium, are prepared employing Kollidon SR by direct compression method. All the tablets were found to be non-disintegrating in acidic (pH1.2) and alkaline (pH 7.4) fluids. As such, the prepared tablets were of good quality with respect to drug content, hardness and friability. As the tablets formulated were non- disintegrating in acidic fluids, they are considered suitable for colon targeting. From the drug release study, it may be concluded that the (DK2) E2 formula of diclofenac sodium matrix tablets gives the desired release profile by showing a minimal release during the lag period of 5 h and complete release at the end of 12 h. The tablets having the optimised formula (DK2)E2, having 25% Kollidon SR with 5% of channelling agent (Eudragit S100 to that of Kollidon SR) showed minimal release of 27. 4% in the lag period of 5 hours and 99.3 % of the drug was released y the end of 12 h. The diclofenac sodium matrix tablets formulated by employing Kollidon SR and various channelling agents showed non-Fickian diffusion mechanism and followed zero order kinetics. The optimized formula (DK2) E2 follows Supercase II transport as mechanism for drug release and it follows zero order kinetics. Matrix tablets (DK2) E2 formulated employing 25% Kollidon SR and 5% Eudragit S100 are best suited to be used for colon targeting of diclofenac sodium.


2019 ◽  
Vol 10 (10) ◽  
pp. 643-658 ◽  
Author(s):  
Neelam Sharma ◽  
Sukhbir Singh

Aim: The current research is focused on increasing aqueous solubility and dissolution of BCS class II drug by using modified solvent evaporation technique to produce solid dispersions of ezetimibe (EZSD) using gelucire 50/13 and polyvinyl pyrollidone K30. Methodology & results: Central composite design analyzed the effect of gelucire 50/13 and polyvinyl pyrollidone K30 on the percentage of drug released in 5 and 30 min. Ezetimibe (EZ) aqueous saturation solubility (4.56 ± 0.94 μg/ml) was increased 25-fold in EZSD (115 ± 3.41 μg/ml). Cumulative drug release from EZ and optimized EZSD were observed 24.67 and 87.54% within 1 h, respectively. Conclusion: Manufacturing EZSD using modified solvent evaporation technique using rotary evaporator holds great promise for enhancing EZ's solubility and dissolution.


Sign in / Sign up

Export Citation Format

Share Document