Case Study: An Introduction to Biological Research Course for Undergraduate Biology Students

2019 ◽  
Vol 049 (01) ◽  
Author(s):  
Kelly Schmid ◽  
Jason Wiles
2017 ◽  
Vol 16 (4) ◽  
pp. ar66 ◽  
Author(s):  
Liz Stanhope ◽  
Laura Ziegler ◽  
Tabassum Haque ◽  
Laura Le ◽  
Marcelo Vinces ◽  
...  

Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative skills of undergraduate students within a biological context. The instrument was developed by an interdisciplinary team of educators and aligns with skills included in national reports such as BIO2010, Scientific Foundations for Future Physicians, and Vision and Change. Undergraduate biology educators also confirmed the importance of items included in the instrument. The current version of the BioSQuaRE was developed through an iterative process using data from students at 12 postsecondary institutions. A psychometric analysis of these data provides multiple lines of evidence for the validity of inferences made using the instrument. Our results suggest that the BioSQuaRE will prove useful to faculty and departments interested in helping students acquire the quantitative competencies they need to successfully pursue biology, and useful to biology students by communicating the importance of quantitative skills. We invite educators to use the BioSQuaRE at their own institutions.


2016 ◽  
Vol 15 (2) ◽  
pp. ar12 ◽  
Author(s):  
Caleb M. Trujillo ◽  
Trevor R. Anderson ◽  
Nancy J. Pelaez

When undergraduate biology students learn to explain biological mechanisms, they face many challenges and may overestimate their understanding of living systems. Previously, we developed the MACH model of four components used by expert biologists to explain mechanisms: Methods, Analogies, Context, and How. This study explores the implementation of the model in an undergraduate biology classroom as an educational tool to address some of the known challenges. To find out how well students’ written explanations represent components of the MACH model before and after they were taught about it and why students think the MACH model was useful, we conducted an exploratory multiple case study with four interview participants. We characterize how two students explained biological mechanisms before and after a teaching intervention that used the MACH components. Inductive analysis of written explanations and interviews showed that MACH acted as an effective metacognitive tool for all four students by helping them to monitor their understanding, communicate explanations, and identify explanatory gaps. Further research, though, is needed to more fully substantiate the general usefulness of MACH for promoting students’ metacognition about their understanding of biological mechanisms.


2018 ◽  
Vol 80 (4) ◽  
pp. 278-284 ◽  
Author(s):  
Andrew A. David

Phylogenetics plays a central role in understanding the evolution of life on Earth, and as a consequence, several active teaching strategies have been employed to aid students in grasping basic phylogenetic principles. Although many of these strategies have been designed to actively engage undergraduate biology students at the freshman level, less attention is given to designing challenges for advanced students. Here, I present a project-based learning (PBL) activity that was developed to teach phylogenetics for junior and senior-level biology students. This approach reinforces the theories and concepts that students have learned in their freshman courses along with incorporating Bioinformatics, which is essential for teaching zoology in the 21st century.


2016 ◽  
Author(s):  
Mikah J. Pritchard ◽  
Trisha A. Turner ◽  
Ellen L. Usher ◽  
Faith L. Jones

Author(s):  
Bart Gremmen

AbstractZwart uses Hegel’s dialectical method to develop a dialectical methodology for assessing biology as technoscience during the Anthropocene. In this paper I will evaluate this use of Hegelian dialectics in biology. I will first elaborate the meaning of Hegel’s method of “Dialectics”. This helps me to evaluate Zwart’s dialectical scientific methodology from the perspective of Hegel’s method of “Dialectics” and to evaluate Zwart’s dialectical scientific methodology from the perspective of the praxis of biology. Finally, I will oppose Zwart’s claim that the synthetic cell is an appropriate case study to demonstrate the relevance of dialectics for understanding contemporary biological research.


2017 ◽  
Vol 16 (3) ◽  
pp. ar52 ◽  
Author(s):  
Lisa M. Potter ◽  
Sarah A. Bissonnette ◽  
Jonathan D. Knight ◽  
Kimberly D. Tanner

The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students’ conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non–biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales.


Author(s):  
Tina M. Ballard ◽  
Sabah Sattar ◽  
Kendra D. Wright ◽  
Jaime L. Sabel ◽  
Heather E. Bergan-Roller

Instructors want students to be prepared for class. There are several different resources and activities available to help students prepare for class, but very little is known about how students choose to prepare for class in the context of undergraduate biology.


Anthrozoös ◽  
2015 ◽  
Vol 28 (3) ◽  
pp. 371-383 ◽  
Author(s):  
Andrea M.-K. Bierema ◽  
Renee S. Schwartz

Sign in / Sign up

Export Citation Format

Share Document