scholarly journals Learning Partnerships Between Undergraduate Biology Students and Younger Learners

2004 ◽  
Vol 5 (1) ◽  
pp. 21-29 ◽  
Author(s):  
LEE ABRAHAMSEN
2016 ◽  
Author(s):  
Mikah J. Pritchard ◽  
Trisha A. Turner ◽  
Ellen L. Usher ◽  
Faith L. Jones

2017 ◽  
Vol 16 (3) ◽  
pp. ar52 ◽  
Author(s):  
Lisa M. Potter ◽  
Sarah A. Bissonnette ◽  
Jonathan D. Knight ◽  
Kimberly D. Tanner

The aspiration of biology education is to give students tools to apply knowledge learned in the classroom to everyday life. Genetic modification is a real-world biological concept that relies on an in-depth understanding of the molecular behavior of DNA and proteins. This study investigated undergraduate biology students’ conceptions of genetically modified organisms (GMOs) when probed with real-world, molecular and cellular, and essentialist cues, and how those conceptions compared across biology expertise. We developed a novel written assessment tool and administered it to 120 non–biology majors, 154 entering biology majors, 120 advanced biology majors (ABM), and nine biology faculty. Results indicated that undergraduate biology majors rarely included molecular and cellular rationales in their initial explanations of GMOs. Despite ABM demonstrating that they have much of the biology knowledge necessary to understand genetic modification, they did not appear to apply this knowledge to explaining GMOs. Further, this study showed that all undergraduate student populations exhibited evidence of essentialist thinking while explaining GMOs, regardless of their level of biology training. Finally, our results suggest an association between scientifically accurate ideas and the application of molecular and cellular rationales, as well as an association between misconceptions and essentialist rationales.


Author(s):  
Tina M. Ballard ◽  
Sabah Sattar ◽  
Kendra D. Wright ◽  
Jaime L. Sabel ◽  
Heather E. Bergan-Roller

Instructors want students to be prepared for class. There are several different resources and activities available to help students prepare for class, but very little is known about how students choose to prepare for class in the context of undergraduate biology.


Anthrozoös ◽  
2015 ◽  
Vol 28 (3) ◽  
pp. 371-383 ◽  
Author(s):  
Andrea M.-K. Bierema ◽  
Renee S. Schwartz

2014 ◽  
Vol 76 (9) ◽  
pp. 609-614 ◽  
Author(s):  
Krissi M. Hewitt ◽  
Lori J. Kayes ◽  
David Hubert ◽  
Adam Chouinard

Recent reform initiatives in undergraduate biology call for curricula that prepare students for dealing with real-world issues and making important links between science and society. In response to this call, we have developed an issues-based laboratory module that uses guided inquiry to integrate the concepts of animal behavior and population biology into an issue of both local and global relevance. The issue associated with this module is “What should be done about invasive crayfish?” Students investigate plausible reasons why crayfish are often successful invasive species through hypothesis testing, collection of behavioral data on live crayfish, and quantitative reasoning. Students also consider economic and environmental impacts of invasive species on local and global ecosystems. We implemented this module in a large introductory biology course and conducted survey research to evaluate the module’s potential to serve as an interesting and valuable learning experience for undergraduate biology students.


2019 ◽  
Vol 18 (4) ◽  
pp. ar63 ◽  
Author(s):  
Nicole Betz ◽  
Jessica S. Leffers ◽  
Emily E. Dahlgaard Thor ◽  
Michal Fux ◽  
Kristin de Nesnera ◽  
...  

Researchers have identified patterns of intuitive thinking that are commonly used to understand and reason about the biological world. These cognitive construals (anthropic, teleological, and essentialist thinking), while useful in everyday life, have also been associated with misconceptions about biological science. Although construal-based thinking is pervasive among students, we know little about the prevalence of construal-consistent language in the university science classroom. In the current research, we characterized the degree to which construal-consistent language is present in biology students’ learning environments. To do so, we coded transcripts of instructor’s speech in 90 undergraduate biology classes for the presence of construal-consistent language. Classes were drawn from two universities with very different student demographic profiles and represented 18 different courses aimed at nonmajors and lower- and upper-division biology majors. Results revealed construal-consistent language in all 90 sampled classes. Anthropic language was more frequent than teleological or essentialist language, and frequency of construal-consistent language was surprisingly consistent across instructor and course level. Moreover, results were surprisingly consistent across the two universities. These findings suggest that construal-consistent language is pervasive in the undergraduate classroom and highlight the need to understand how such language may facilitate and/or interfere with students learning biological science.


2017 ◽  
Vol 16 (4) ◽  
pp. ar66 ◽  
Author(s):  
Liz Stanhope ◽  
Laura Ziegler ◽  
Tabassum Haque ◽  
Laura Le ◽  
Marcelo Vinces ◽  
...  

Multiple reports highlight the increasingly quantitative nature of biological research and the need to innovate means to ensure that students acquire quantitative skills. We present a tool to support such innovation. The Biological Science Quantitative Reasoning Exam (BioSQuaRE) is an assessment instrument designed to measure the quantitative skills of undergraduate students within a biological context. The instrument was developed by an interdisciplinary team of educators and aligns with skills included in national reports such as BIO2010, Scientific Foundations for Future Physicians, and Vision and Change. Undergraduate biology educators also confirmed the importance of items included in the instrument. The current version of the BioSQuaRE was developed through an iterative process using data from students at 12 postsecondary institutions. A psychometric analysis of these data provides multiple lines of evidence for the validity of inferences made using the instrument. Our results suggest that the BioSQuaRE will prove useful to faculty and departments interested in helping students acquire the quantitative competencies they need to successfully pursue biology, and useful to biology students by communicating the importance of quantitative skills. We invite educators to use the BioSQuaRE at their own institutions.


2003 ◽  
Vol 2 (4) ◽  
pp. 233-247 ◽  
Author(s):  
Jerry E. Honts

Recent advances in genomics and structural biology have resulted in an unprecedented increase in biological data available from Internet-accessible databases. In order to help students effectively use this vast repository of information, undergraduate biology students at Drake University were introduced to bioinformatics software and databases in three courses, beginning with an introductory course in cell biology. The exercises and projects that were used to help students develop literacy in bioinformatics are described. In a recently offered course in bioinformatics, students developed their own simple sequence analysis tool using the Perl programming language. These experiences are described from the point of view of the instructor as well as the students. A preliminary assessment has been made of the degree to which students had developed a working knowledge of bioinformatics concepts and methods. Finally, some conclusions have been drawn from these courses that may be helpful to instructors wishing to introduce bioinformatics within the undergraduate biology curriculum.


Sign in / Sign up

Export Citation Format

Share Document