scholarly journals Paclitaxel - Combined Curcumin - Loaded PLA-TPGS - Based Nanoparticles Induce Apoptosis and Inhibit the Growth of Breast Cancer Cells and Multicellular Tumor Spheroids

Author(s):  
Nguyen Dac Tu ◽  
Tran Phan Anh ◽  
Ha Phuong Thu ◽  
Nguyen Hoai Nam ◽  
Nguyen Xuan Phuc ◽  
...  

Paclitaxel and curcumin have been reported as anti-cancer drugs. Here we presented a novel combination of paclitaxel and curcumin-loaded PLA-TPGS (PTX-Cur/PLA-TPGS) nanoparticles prepared by a modified solvent extraction/evaporation technique. These nanoparticles were well distributed and stable in water. This combination of paclitaxel and curcumin gave a higher efficiency of both drugs in cytotoxicity; induced apoptosis; and effect on cell cycles of KPL4 cell line in compare with the use of paclitaxel or curcumin alone or even a normal mixture of these two drugs. Furthermore, PTX-Cur/PLA-TPGS nanoparticles exhibited a powerful ability in preventing MCF7 spheroids growth. Interestingly, curcumin also functioned as both a drug and a label. Base on the autofluorescence of curcumin, the absorption of PTX-Cur/PLA-TPGS nanoparticles into MCF7 spheroids could be followed and calculated. These results suggested that the nanoparticle-drug combination may provide a promising multifunctional delivery system for anti-cancer drugs.

2021 ◽  
pp. 096032712110214
Author(s):  
Yansong Chen ◽  
Ye Tian ◽  
Gongsheng Jin ◽  
Zhen Cui ◽  
Wei Guo ◽  
...  

This study aimed to investigate the anti-cancer effect of lobetyolin on breast cancer cells. Lobetyolin was incubated with MDA-MB-231 and MDA-MB-468 breast cancer cells for 24 h. Glucose uptake and the mRNA expression of GLUT4 ( SLC2A4), HK2 and PKM2 were detected to assess the effect of lobetyolin on glucose metabolism. Glutamine uptake and the mRNA expression of ASCT2 ( SLC1A5), GLS1, GDH and GLUL were measured to assess the effect of lobetyolin on glutamine metabolism. Annexin V/PI double staining and Hoechst 33342 staining were used to investigate the effect of lobetyolin on cell apoptosis. Immunoblot was employed to estimate the effect of lobetyolin on the expression of proliferation-related markers and apoptosis-related markers. SLC1A5 knockdown with specific siRNA was performed to study the role of ASCT2 played in the anti-cancer effect of lobetyolin on MDA-MB-231 and MDA-MB-468 breast cancer cells. C-MYC knockdown with specific siRNA was performed to study the role of c-Myc played in lobetyolin-induced ASCT2 down-regulation. Myr-AKT overexpression was performed to investigate the role of AKT/GSK3β signaling played in lobetyolin-induced down-regulation of c-Myc and ASCT2. The results showed that lobetyolin inhibited the proliferation of both MDA-MB-231 and MDA-MB-468 breast cancer cells. Lobetyolin disrupted glutamine uptake via down-regulating ASCT2. SLC1A5 knockdown attenuated the anti-cancer effect of lobetyolin. C-MYC knockdown attenuated lobetyolin-caused down-regulation of ASCT2 and Myr-AKT overexpression reversed lobetyolin-caused down-regulation of both c-Myc and ASCT2. In conclusion, the present work suggested that lobetyolin exerted anti-cancer effect via ASCT2 down-regulation-induced apoptosis in breast cancer cells.


Author(s):  
Samad Beheshtirouy ◽  
Farhad Mirzaei ◽  
Shirin Eyvazi ◽  
Vahideh Tarhriz

: Breast cancer is a heterogeneous malignancy which is the second cause of mortality among women in the world. Increasing the resistance to anti-cancer drugs in breast cancer cells persuades researchers to search the novel therapies approaches for the treatment of the malignancy. Among the novel methods, therapeutic peptides which target and disrupt tumor cells have been of great interest. Therapeutic peptides are short amino acids monomer chains with high specificity to bind and modulate a protein interaction of interest. Several advantages of peptides such as specific binding on tumor cells surface, low molecular weight and low toxicity on normal cells make the peptides as an appealing therapeutic agents against solid tumors, particularly breast cancer. Also, National Institutes of Health (NIH) describes therapeutic peptides as suitable candidate for the treatment of drug-resistant breast cancer. In this review, we attempt to review the different therapeutic peptides against breast cancer cells which can be used in treatment and diagnosis of the malignancy. Meanwhile, we presented an overview of peptide vaccines which have been developed for the treatment of breast cancer.


2015 ◽  
Vol 116 (7) ◽  
pp. 1371-1380 ◽  
Author(s):  
Shambhavi Naik ◽  
Marion MacFarlane ◽  
Apurva Sarin

2012 ◽  
Vol 16 (1) ◽  
pp. 96-107 ◽  
Author(s):  
Laure Benjamin ◽  
Valérie Buthion ◽  
Michaël Iskedjian ◽  
Bechara Farah ◽  
Catherine Rioufol ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document