Formal Logic of Cellular Automata

2021 ◽  
Vol 30 (2) ◽  
pp. 187-203
Author(s):  
Sukanta Das ◽  
◽  
Mihir K. Chakraborty ◽  

This paper develops a formal logic, named L CA , targeting modeling of one-dimensional binary cellular automata. We first develop the syntax of L CA , then give semantics to L CA in the domain of all binary strings. Then the elementary cellular automata and four-neighborhood binary cellular automata are shown as models of the logic. These instances point out that there are other models of L CA . Finally it is proved that any one-dimensional binary cellular automaton is a model of the proposed logic.

2011 ◽  
Vol 22 (04) ◽  
pp. 419-439 ◽  
Author(s):  
GENARO J. MARTÍNEZ ◽  
ANDREW ADAMATZKY ◽  
CHRISTOPHER R. STEPHENS ◽  
ALEJANDRO F. HOEFLICH

Gliders in one-dimensional cellular automata are compact groups of non-quiescent and non-ether patterns (ether represents a periodic background) translating along automaton lattice. They are cellular automaton analogous of localizations or quasi-local collective excitations traveling in a spatially extended nonlinear medium. They can be considered as binary strings or symbols traveling along a one-dimensional ring, interacting with each other and changing their states, or symbolic values, as a result of interactions. We analyze what types of interaction occur between gliders traveling on a cellular automaton "cyclotron" and build a catalog of the most common reactions. We demonstrate that collisions between gliders emulate the basic types of interaction that occur between localizations in nonlinear media: fusion, elastic collision, and soliton-like collision. Computational outcomes of a swarm of gliders circling on a one-dimensional torus are analyzed via implementation of cyclic tag systems.


2014 ◽  
Vol 25 (03) ◽  
pp. 1350098 ◽  
Author(s):  
Shigeru Ninagawa ◽  
Andrew Adamatzky

An elementary cellular automaton (ECA) is a one-dimensional, synchronous, binary automaton, where each cell update depends on its own state and states of its two closest neighbors. We attempt to uncover correlations between the following measures of ECA behavior: compressibility, sensitivity and diversity. The compressibility of ECA configurations is calculated using the Lempel–Ziv (LZ) compression algorithm LZ78. The sensitivity of ECA rules to initial conditions and perturbations is evaluated using Derrida coefficients. The generative morphological diversity shows how many different neighborhood states are produced from a single nonquiescent cell. We found no significant correlation between sensitivity and compressibility. There is a substantial correlation between generative diversity and compressibility. Using sensitivity, compressibility and diversity, we uncover and characterize novel groupings of rules.


2019 ◽  
Vol 8 (4) ◽  
pp. 41-61
Author(s):  
Marcelo Arbori Nogueira ◽  
Pedro Paulo Balbi de Oliveira

Cellular automata present great variability in their temporal evolutions due to the number of rules and initial configurations. The possibility of automatically classifying its dynamic behavior would be of great value when studying properties of its dynamics. By counting on elementary cellular automata, and considering its temporal evolution as binary images, the authors created a texture descriptor of the images - based on the neighborhood configurations of the cells in temporal evolutions - so that it could be associated to each dynamic behavior class, following the scheme of Wolfram's classic classification. It was then possible to predict the class of rules of a temporal evolution of an elementary rule in a more effective way than others in the literature in terms of precision and computational cost. By applying the classifier to the larger neighborhood space containing 4 cells, accuracy decreased to just over 70%. However, the classifier is still able to provide some information about the dynamics of an unknown larger space with reduced computational cost.


2011 ◽  
Vol 2011 ◽  
pp. 1-16 ◽  
Author(s):  
Pabitra Pal Choudhury ◽  
Sudhakar Sahoo ◽  
Mithun Chakraborty

Dynamics of a nonlinear cellular automaton (CA) is, in general asymmetric, irregular, and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable, primarily due to the presence of a matrix handle. In this paper, we present a novel technique of studying the properties of the State Transition Diagram of a nonlinear uniform one-dimensional cellular automaton in terms of its deviation from a suggested linear model. We have considered mainly elementary cellular automata with neighborhood of size three, and, in order to facilitate our analysis, we have classified the Boolean functions of three variables on the basis of number and position(s) of bit mismatch with linear rules. The concept of deviant and nondeviant states is introduced, and hence an algorithm is proposed for deducing the State Transition Diagram of a nonlinear CA rule from that of its nearest linear rule. A parameter called the proportion of deviant states is introduced, and its dependence on the length of the CA is studied for a particular class of nonlinear rules.


2011 ◽  
Vol 21 (05) ◽  
pp. 1265-1279 ◽  
Author(s):  
XU XU ◽  
STEPHEN P. BANKS ◽  
MAHDI MAHFOUF

It is well-known that binary-valued cellular automata, which are defined by simple local rules, have the amazing feature of generating very complex patterns and having complicated dynamical behaviors. In this paper, we present a new type of cellular automaton based on real-valued states which produce an even greater amount of interesting structures such as fractal, chaotic and hypercyclic. We also give proofs to real-valued cellular systems which have fixed points and periodic solutions.


2013 ◽  
Vol 24 (03) ◽  
pp. 1350010 ◽  
Author(s):  
MARKUS REDEKER ◽  
ANDREW ADAMATZKY ◽  
GENARO J. MARTÍNEZ

We investigate expressiveness, a parameter of one-dimensional cellular automata, in the context of simulated biological systems. The development of elementary cellular automata is interpreted in terms of biological systems, and biologically inspired parameters for biodiversity are applied to the configurations of cellular automata. This paper contains a survey of the Elementary Cellular Automata in terms of their expressiveness and an evaluation whether expressiveness is a meaningful term in the context of simulated biology.


2004 ◽  
Vol 15 (03) ◽  
pp. 409-425
Author(s):  
FRANCISCO JIMÉNEZ-MORALES ◽  
MARCO TOMASSINI

Using a genetic algorithm a population of one-dimensional binary cellular automata is evolved to perform a computational task for which the best evolved rules cause the concentration to display a period-three oscillation. One run is studied in which the final state reached by the best evolved rule consists of a regular pattern or domain Λ, plus some propagating particles. It is shown that globally synchronized period-three oscillations can be obtained if the lattice size L is a multiple of the spatial periodicity S(Λ) of the domain. When L=m.S(Λ)-1 there is a cyclic particle reaction that keeps the system in two different phases and the concentration has a temporal periodicity that depends on the lattice size. The effects of random noise on the evolved cellular automata has also been investigated.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolai Lang ◽  
Hans Peter Büchler

Active quantum error correction on topological codes is one of the most promising routes to long-term qubit storage. In view of future applications, the scalability of the used decoding algorithms in physical implementations is crucial. In this work, we focus on the one-dimensional Majorana chain and construct a strictly local decoder based on a self-dual cellular automaton. We study numerically and analytically its performance and exploit these results to contrive a scalable decoder with exponentially growing decoherence times in the presence of noise. Our results pave the way for scalable and modular designs of actively corrected one-dimensional topological quantum memories.


2003 ◽  
Vol 14 (03) ◽  
pp. 379-395 ◽  
Author(s):  
JUAN CARLOS SECK TUOH MORA ◽  
SERGIO V. CHAPA VERGARA ◽  
GENARO JUÁREZ MARTÍNEZ ◽  
HAROLD V. McINTOSH

Reversible cellular automata are invertible dynamical systems characterized by discreteness, determinism and local interaction. This article studies the local behavior of reversible one-dimensional cellular automata by means of the spectral properties of their connectivity matrices. We use the transformation of every one-dimensional cellular automaton to another of neighborhood size 2 to generalize the results exposed in this paper. In particular we prove that the connectivity matrices have a single positive eigenvalue equal to 1; based on this result we also prove the idempotent behavior of these matrices. The significance of this property lies in the implementation of a matrix technique for detecting whether a one-dimensional cellular automaton is reversible or not. In particular, we present a procedure using the eigenvectors of these matrices to find the inverse rule of a given reversible one-dimensional cellular automaton. Finally illustrative examples are provided.


2020 ◽  
Vol 30 (3) ◽  
pp. 745-763
Author(s):  
MING HSIUNG

Abstract We associate an elementary cellular automaton with a set of self-referential sentences, whose revision process is exactly the evolution process of that automaton. A simple but useful result of this connection is that a set of self-referential sentences is paradoxical, iff (the evolution process for) the cellular automaton in question has no fixed points. We sort out several distinct kinds of paradoxes by the existence and features of the fixed points of their corresponding automata. They are finite homogeneous paradoxes and infinite homogeneous paradoxes. In some weaker sense, we will also introduce no-no-sort paradoxes and virtual paradoxes. The introduction of these paradoxes, in turn, leads to a new classification of the cellular automata.


Sign in / Sign up

Export Citation Format

Share Document